Advertisement

Cohomology structure for a Poisson algebra: II

  • Yan-Hong Bao
  • Yu YeEmail author
Articles
  • 3 Downloads

Abstract

For a Poisson algebra, we prove that the Poisson cohomology theory introduced by Flato et al. (1995) is given by a certain derived functor. We show that the (generalized) deformation quantization is equivalent to the formal deformation for Poisson algebras under certain mild conditions. Finally we construct a long exact sequence, and use it to calculate the Poisson cohomology groups via the Yoneda-extension groups of certain quasi-Poisson modules and the Lie algebra cohomology groups.

Keywords

Poisson algebra Poisson cohomology formal deformation deformation quantization 

MSC(2010)

16E40 16W10 17B37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11401001, 11871071, 11431010 and 11571329).

11401001,11871071,11431010 and 11571329).

References

  1. 1.
    Bao Y H, Ye Y. Cohomology structures for a Poisson algebra I. J Algebra Appl, 2016, 15: 16500349MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cartan H, Eilenberg S. Homological Algebra. Princeton: Princeton University Press, 1956zbMATHGoogle Scholar
  3. 3.
    Doubek M, Markl M, Zima P. Deformation theory (lecture notes). Arch Math (Brno), 2007, 43: 333–371MathSciNetzbMATHGoogle Scholar
  4. 4.
    Farkas D R, Letzter G. Ring theory from symmplectic geometry. J Pure Appl Algebra, 1998, 125: 155–190MathSciNetCrossRefGoogle Scholar
  5. 5.
    Flato M, Gerstenhaber M, Voronov A A. Cohomology and deformation of Leibniz pairs. Lett Math Phys, 1995, 34: 77–90MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gutt S. Variations on deformation quantization. In: Conference Moshé Flato, vol. I. Mathematical Physics Studies, vol. 21. Dordrecht: Kluwer Acad Publ, 2000, 217–254Google Scholar
  7. 7.
    Hochschild G, Kostant B, Rosenberg A. Differential forms on regular affine algebras. Trans Amer Math Soc, 1962, 102: 383–408MathSciNetCrossRefGoogle Scholar
  8. 8.
    Huebschmann J. Poisson cohomology and quantization. J Reine Angew Math, 1990, 408: 57–113MathSciNetzbMATHGoogle Scholar
  9. 9.
    Huebschmann J. Duality for Lie-Rinehart algebras and the modular class. J Reine Angew Math, 1999, 510: 103–159MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kontsevich M. Deformation quatization of Poisson manifolds. Lett Math Phys. 2003, 66: 157–216MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lichnerowicz A. Les variétés de Poisson et leur algèbres de Lie associées. J Differential Geom, 1977, 12: 253–300CrossRefGoogle Scholar
  12. 12.
    Luo J, Wang S Q, Wu Q S. Twisted Poincaré duality between Poisson homology and Poisson cohomology. J Algebra, 2015, 442: 484–505MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pichereau A. Formal deformations of Poisson structures in low dimensions. Pacific J Math, 2009, 239: 105–133MathSciNetCrossRefGoogle Scholar
  14. 14.
    Poisson S D. Sur la variation des constantes arbitraires dans les questions de mécanique. J Ecole Polytechnique, 1809, 15: 266–344Google Scholar
  15. 15.
    Ruuge A, Van Oystaeyen F. Distortion of the Poisson bracket by the noncommutative Planck constants. Comm Math Phys, 2011, 304: 369–393MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sternheimer D. Deformation quantization: Twenty years after. In: Particles, Fields, and Gravitation. AIP Conference Proceedings, vol. 453. Woodbury: Amer Inst Phys, 1998, 107–145Google Scholar
  17. 17.
    Xu P. Noncommutative Poisson algebras. Amer J Math, 1994, 116: 101–125MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yang Y H, Yao Y, Ye Y. (Quasi-)Poisson enveloping algebras. Acta Math Sin (Engl Ser), 2013, 29: 105–118MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesAnhui UniversityHefeiChina
  2. 2.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Wu Wen-Tsun Key Laboratory of MathematicsUSTC, Chinese Academy of SciencesHefeiChina

Personalised recommendations