Science China Mathematics

, Volume 62, Issue 11, pp 2401–2408 | Cite as

Linear forms, algebraic cycles, and derivatives of L-series

  • Shouwu ZhangEmail author


In this note, we state some refinements of conjectures of Gan-Gross-Prasad and Kudla concerning the central derivatives of L-series and special cycles on Shimura varieties. The analogues of our formulation for special values of L-series are written in terms of invariant linear forms on autormorphic representations defined by integrations of matrix coefficients.


linear forms algebraic cycles derivatives L-series 


11F67 11J20 14C25 



The author thanks Wee Teck Gan, Benedict Gross, Jianshu Li, Yifeng Liu, Akshay Venkatesh and Wei Zhang for their help in preparation of this note.


  1. 1.
    Aizenbud A, Gourvitch D, Rallis S, Schiffmann G. Multiplicity one theorems. Ann of Math (2), 2010, 172: 1407–1434MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beilinson A. Higher regulators and values of L-functions. J Soviet Math, 1985, 30: 2036–2070CrossRefGoogle Scholar
  3. 3.
    Beilinson A. Height pairing between algebraic cycles. In: Current Trends in Arithmetical Algebraic Geometry. Contemporary Mathematics, vol. 67. Providence: Amer Math Soc 1987, 1–24Google Scholar
  4. 4.
    Bloch S. Height pairings for algebraic cycles. In: Proceedings of the Luminy Conference on Algebraic K-Theory. Journal of Pure and Applied Algebra, vol. 34. Amsterdam: Elsevier 1984, 119–145Google Scholar
  5. 5.
    Gan W T, Gross B, Prasad D. Symplectic local root numbers, central critical L-values, and restriction problems in the Represenation Theory of Classical Groups. In: Sur les conjectures de Gross et Prasad. Astérisque, vol. 346. Paris: Soc Math France 2012, 171–312Google Scholar
  6. 6.
    Gross B, Prasad D. On the decomposition of a representation of SOn when restricted to SOn−1. Canad J Math, 1992, 44: 974–1002MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gross B, Prasad D. On irreducible representations of SO2n+1 × SO2m. Canad J Math, 1994, 46: 974–1002CrossRefGoogle Scholar
  8. 8.
    Gross B, Zagier D. Heegner points and derivatives of L-series. Invent Math, 1986, 84: 225–320MathSciNetCrossRefGoogle Scholar
  9. 9.
    Harris N. The refined Gross-Prasad conjecture for unitary groups. ArXiv:1201.0518, 2012MathSciNetCrossRefGoogle Scholar
  10. 10.
    He H. Unitary representations and the theta correspondence for type I classical groups. J Funct Anal, 2003, 199: 92–121MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ichino A. A regularized Siegel-Weil formula for unitary groups. Math Z, 2004, 247: 241–277MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ichino A. On the Siegel-Weil formula for unitary groups. Math Z, 2007, 255: 721–729MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ichino A. Trilinear forms and the central values of triple product L-functions. Duke Math J, 2008, 145: 281–307MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ichino A, Ikeda T. On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture. Geom Funct Anal, 2010, 19: 1378–1425MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jacquet H, Rallis S. On the Gross-Prasad conjecture for unitary groups. In: On certain L-functions. Clay Mathematics Proceedings, vol. 13. Providence: Amer Math Soc 2011, 205–264zbMATHGoogle Scholar
  16. 16.
    Kudla S. Modular forms and arithmetic geometry. In: Current Developments in Mathematics. Somerville: International Press 2003, 135–179Google Scholar
  17. 17.
    Kudla S. Special cycles and derivatives of Eisenstein series, in Heegner points and Rankin L-series. In: Mathematical Sciences Research Institute Publications, vol. 49. Cambridge: Cambridge University Press 2004, 243–270Google Scholar
  18. 18.
    Kudla S, Rallis S. A regularized Siegel-Weil formula: The first term identity. Ann of Math (2), 1994, 140: 1–80MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kudla S, Rapoport M, Yang T. Modular Forms and Special Cycles on Shimura Curves. Annals of Mathematics Studies, vol. 161. Princeton-Oxford: Princeton University Press 2006Google Scholar
  20. 20.
    Li J-S. Non-vanishing theorems for the cohomology of certain arithemetic quotients. J Reine Angew Math, 1992, 428: 177–217MathSciNetGoogle Scholar
  21. 21.
    Li J-S, Harris M, Sun B-Y. Theta correspondences for close unitary groups. Adv Lect Math (ALM) (Somerville), 2011, 19: 265–308MathSciNetzbMATHGoogle Scholar
  22. 22.
    Liu Y. Arithmetic theta lifting and L-derivatives for unitary groups I. Algebra Number Theory, 2011, 5: 849–921MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu Y. Arithmetic theta lifting and L-derivatives for unitary groups II. Algebra Number Theory, 2011, 5: 923–1000MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rallis S. Injectivity properties of liftings associated to Weil representations. Compos Math, 1984, 52: 136–169MathSciNetzbMATHGoogle Scholar
  25. 25.
    Sakelaridis Y, Venkatesh A. Periods and harmonic analysis on spherical varieties. Asterisque, 2017, 396: 360MathSciNetzbMATHGoogle Scholar
  26. 26.
    Sun B, Zhu C. Multiplicity one theorems: The Archimedean case. Ann of Math (2), 2012, 175: 23–44MathSciNetCrossRefGoogle Scholar
  27. 27.
    Waldspurger J-L. Sur les valeurs de certaines fonctions L automorphes en leaur centre de symmétre. Compos Math, 1985, 54:193–242Google Scholar
  28. 28.
    Yuan X, Zhang S, Zhang W. The Gross-Zagier Formula on Shimura Curves. Annals of Mathematics Studies, vol. 184. Princeton: Princeton University Press 2013Google Scholar
  29. 29.
    Yuan X, Zhang S, Zhang W. Triple product L-series and Gross-Kudla-Schoen cycles.∼wz2113/math/online/triple.pdf, 2012
  30. 30.
    Yun Z. The fundamental lemma of Jacquet-Rallis. With an appendix by J. Gordon: Transfer to characteristic zero. Duke Math J 2011, 156: 167–228MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang W. Gross-Zagier formula and arithmetic fundamental lemma. In: Fifth International Congress of Chinese Mathematicians. Part 1, 2. AMS/IP Studies in Advanced Mathematics, vol. 51. Providence: Amer Math Soc 2012, 447–459Google Scholar
  32. 32.
    Zhang W. On arithmetic fundamental lemmas. Invent Math, 2012, 188: 197–252MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations