Advertisement

Science China Mathematics

, Volume 62, Issue 6, pp 1057–1086 | Cite as

Semi-classical analysis on H-type groups

  • Clotilde Fermanian Kammerer
  • Véronique FischerEmail author
Articles
  • 6 Downloads

Abstract

In this paper, we develop semi-classical analysis on H-type groups. We define semi-classical pseudodi fferential operators, prove the boundedness of their action on square integrable functions and develop a symbolic calculus. Then, we define the semi-classical measures of bounded families of square integrable functions which consist of a pair formed by a measure defined on the product of the group and its unitary dual, and by a field of trace class positive operators acting on the Hilbert spaces of the representations. We illustrate the theory by analyzing examples, which show in particular that this semi-classical analysis takes into account thefinite-dimensional representations of the group, even though they are negligible with respect to the Plancherel measure.

Keywords

H-type groups semi-classical pseudodifferential operators semi-classical measures Wigner transform asymptotic analysis microlocal analysis 

MSC(2010)

35S05 22E30 46L89 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This paper was written while Clotilde Fermanian Kammerer was visiting Technische Universität München and she thanks the members of the mathematics department of this institution for their kind hospitality, especially Caroline Lasser and Simone Warzel.

References

  1. 1.
    Anantharaman N, Faure F, Fermanian Kammerer C. Chaos Quantique. Palaiseau: École Polytechnique, 2014Google Scholar
  2. 2.
    Anantharaman N, Macia F. The dynamics of the Schrödinger flow from the point of view of semiclassical measures. In: Spectral Geometry. Proceedings of Symposia in Pure Mathematics, vol. 84. Providence: Amer Math Soc, 2012, 93–116CrossRefzbMATHGoogle Scholar
  3. 3.
    Anantharaman N, Macia F. Semiclassical measures for the Schrödinger equation on the torus. J Eur Math Soc (JEMS), 2014, 16: 1253–1288MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Astengo F, Di Blasio B, Ricci F. Gelfand pairs on the Heisenberg group and Schwartz functions. J Funct Anal, 2009, 256: 1565–1587MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bahouri H, Chemin J-Y, Danchin R. A frequency space for the Heisenberg group. ArXiv:1609.03850, 2016Google Scholar
  6. 6.
    Bahouri H, Chemin J-Y, Danchin R. Tempered distributions and Fourier transform on the Heisenberg group. ArXiv: 1705.02195, 2017Google Scholar
  7. 7.
    Bahouri H, Chemin J-Y, Gallagher I. Precised Hardy inequalities on Rd and on the Heisenberg group Hd. Séminaire Équations aux Dérivées Partielles de l’École Polytechnique (2004–2005), Exposé XIX, 2005zbMATHGoogle Scholar
  8. 8.
    Bahouri H, Chemin J-Y, Xu C-J. Trace theorem in Sobolev spaces associated with Hörmander’s vector fields. In: Partial Differential Equations and Their Applications. River Edge: World Sci Publ, 1999, 1–14zbMATHGoogle Scholar
  9. 9.
    Bahouri H, Chemin J-Y, Xu C-J. Trace theorem on the Heisenberg group on homogeneous hypersurfaces. In: Phase Space Analysis of Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol. 69. Boston: Birkhäuser, 2006, 1–15CrossRefzbMATHGoogle Scholar
  10. 10.
    Bahouri H, Chemin J-Y, Xu C-J. Trace theorem on the Heisenberg group. Ann Inst Fourier (Grenoble), 2009, 59: 491–514MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bahouri H, Fermanian Kammerer C, Gallagher I. Phase Space Analysis on the Heisenberg Group. Astérisque, vol. 345. Paris: Soc Math France, 2012zbMATHGoogle Scholar
  12. 12.
    Bahouri H, Fermanian Kammerer C, Gallagher I. Dispersive estimates for the Schrödinger operator on step 2 stratified Lie groups. Anal PDE, 2016, 9: 545–574MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bahouri H, Gérard P, Xu C-J. Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg. J Anal Math, 2000, 82: 93–118MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Beals R, Greiner P. Calculus on Heisenberg Manifolds. Annals of Mathematics Studies, vol. 119. Princeton: Princeton University Press, 1988Google Scholar
  15. 15.
    Christ M, Geller D, Glowacki P, et al. Pseudodifferential operators on groups with dilations. Duke Math J, 1992, 68: 31–65Google Scholar
  16. 16.
    Colin de Verdiere Y, Hillairet L, Trélat E. Spectral asymptotics for sub-Riemannian Laplacians. I: Quantum ergodicity and quantum limits in the 3D contact case. Duke Math J, 2018, 167: 109–174zbMATHGoogle Scholar
  17. 17.
    Damek E, Ricci F. Harmonic analysis on solvable extensions of H-type groups. J Geom Anal, 1992, 2: 213–248MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Del Hierro M. Dispersive and Strichartz estimates on H-type groups. Studia Math, 2005, 169: 1–20MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dixmier J. C*-Algebras. North-Holland Mathematical Library, vol. 15. Amsterdam-New York-Oxford: North-Holland, 1977zbMATHGoogle Scholar
  20. 20.
    Faraut J, Harzallah K. Deux Cours d’Analyse Harmonique. Progress in Mathematics, vol. 69. Boston: Birkhäuser, 1987zbMATHGoogle Scholar
  21. 21.
    Fermanian Kammerer C, Fischer V. Defect measures on graded lie groups. ArXiv:1707.04002, 2017Google Scholar
  22. 22.
    Fermanian Kammerer C, Gérard P. A Landau-Zener formula for non-degenerated involutive codimension 3 crossings. Ann Henri Poincaré, 2003, 4: 513–552MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fischer V, Ricci F, Yakimova O. Nilpotent Gelfand pairs and spherical transforms of Schwartz functions I: Rank-one actions on the centre. Math Z, 2012, 271: 221–255MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Fischer V, Ruzhansky M. Quantization on Nilpotent Lie Groups. Progress in Mathematics, vol. 314. Basel: Birkhäuser, 2016CrossRefzbMATHGoogle Scholar
  25. 25.
    Folland G B, Stein E. Hardy Spaces on Homogeneous Groups. Princeton: Princeton University Press, 1982zbMATHGoogle Scholar
  26. 26.
    Geller D. Analytic Pseudodifferential Operators for the Heisenberg Group and Local Solvability. Mathematical Notes, vol. 37. Princeton: Princeton University Press, 1990CrossRefzbMATHGoogle Scholar
  27. 27.
    Gérard P. Mesures semi-classiques et ondes de Bloch. Séminaire Équations aux Dérivées Partielles de l’École Polytechnique (1990–1991), Exposé XVI, 1991zbMATHGoogle Scholar
  28. 28.
    Gérard P, Leichtnam E. Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math J, 1993, 71: 559–607MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gérard P, Markowich P A, Mauser N J, et al. Homogenization limits and Wigner transforms. Comm Pure Appl Math, 1997, 50: 323–379MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Helffer B. 30 ans d’analyse semi-classique: Bibliographie commentée. http://www.math.u-psud.fr/helffer/histoire2003.ps Google Scholar
  31. 31.
    Helffer B J, Sjöstrand J. Equation de Schrödinger avec champ magnétique et équation de Harper. In: Lecture Notes in Physics, vol. 345. Berlin: Springer, 1989, 118–198CrossRefzbMATHGoogle Scholar
  32. 32.
    Hörmander L. The Weyl calculus of pseudodifferential operators. Comm Pure Appl Math, 1979, 32: 360–444MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kaplan A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans Amer Math Soc, 1980, 258: 147–153MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Korányi A. Some applications of Gelfand pairs in classical analysis. In: Harmonic Analysis and Group Representations. Naples: Liguori, 1982, 333–348Google Scholar
  35. 35.
    Lévy G. The Fourier transform on 2-step Lie groups. ArXiv:1712.09880, 2017Google Scholar
  36. 36.
    Lions P-L, Paul T. Sur les mesures de Wigner. Rev Mat Iberoamericana, 1993, 9: 553–618CrossRefGoogle Scholar
  37. 37.
    Mantoiu M, Ruzhansky M. Pseudo-differential operators, Wigner transform andWeyl systems on type I locally compact groups. Doc Math, 2017, 22: 1539–1592MathSciNetzbMATHGoogle Scholar
  38. 38.
    Ruzhansky M, Turunen V. On the Fourier analysis of operators on the torus. In: Modern Trends in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol. 172. Basel: Birkhäuser, 2007, 87–105CrossRefzbMATHGoogle Scholar
  39. 39.
    Shubin M L A. Pseudodifferential Operators and Spectral Theory. Springer Series in Soviet Mathematics. Berlin: Springer-Verlag, 1987CrossRefzbMATHGoogle Scholar
  40. 40.
    Taylor M E. Noncommutative Microlocal Analysis. I. Memoirs of the American Mathematical Society, vol. 52. Providence: Amer Math Soc, 1984CrossRefzbMATHGoogle Scholar
  41. 41.
    Wigner E O. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. New York: Academic Press, 1959zbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Clotilde Fermanian Kammerer
    • 1
  • Véronique Fischer
    • 2
    Email author
  1. 1.Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050)UPEM, UPEC, CNRSCréteilFrance
  2. 2.Department of Mathematical SciencesUniversity of BathBathUK

Personalised recommendations