Advertisement

Dynamics of a rigid body in a two-dimensional incompressible perfect fluid and the zero-radius limit

  • Franck SueurEmail author
Reviews
  • 5 Downloads

Abstract

In this survey we report some recent results on the dynamics of a rigid body immersed in a two-dimensional incompressible perfect fluid, with an emphasis on the zero-radius limit.

Keywords

fluid-structure interaction point vortex perfect incompressible fluid 

MSC(2010)

35F55 76B47 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Agence Nationale de la Recherche, Project IFSMACS (Grant No. ANR-15-CE40-0010), Project BORDS (Grant No. ANR-16-CE40-0027-01), Project SINGFLOWS (Grant No. ANR-18-CE40-0027-01), the Conseil Régionale d’Aquitaine (Grant No. 2015.1047.CP), the H2020-MSCA-ITN-2017 program Project ConFlex Grant ETN-765579 and the Institut Universitaire de France.

References

  1. 1.
    Glass O, Lacave C, Sueur F. On the motion of a small body immersed in a two dimensional incompressible perfect fluid. Bull Soc Math France, 2014, 142: 489–536MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Glass O, Lacave C, Sueur F. On the motion of a small light body immersed in a two dimensional incompressible perfect fluid with vorticity. Comm Math Phys, 2016, 341: 1015–1065MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Glass O, Munnier A, Sueur F. Point vortex dynamics as zero-radius limit of the motion of a rigid body in an irrotational fluid. Invent Math, 2018, 214: 171–287MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Glass O, Sueur F. On the motion of a rigid body in a two-dimensional irregular ideal flow. SIAM J Math Anal, 2013, 44: 3101–3126MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Glass O, Sueur F. Low regularity solutions for the two-dimensional “rigid body + incompressible Euler” system. Differential Integral Equations, 2014, 27: 625–642MathSciNetzbMATHGoogle Scholar
  6. 6.
    Glass O, Sueur F. Uniqueness results for weak solutions of two-dimensional fluid-solid systems. Arch Ration Mech Anal, 2015, 218: 907–944MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Houot J. Analyse mathématique des mouvements des rigides dans un fluide parfait. Thèse. Nancy: Université de Nancy 1, 2008Google Scholar
  8. 8.
    Houot J, Munnier A. On the motion and collisions of rigid bodies in an ideal fluid. Asymptot Anal, 2008, 56: 125–158MathSciNetzbMATHGoogle Scholar
  9. 9.
    Lamb H. Hydrodynamics, 6th ed. Cambridge: Cambridge University Press, 1993zbMATHGoogle Scholar
  10. 10.
    Munnier A. Locomotion of deformable bodies in an ideal fluid: Newtonian versus Lagrangian formalisms. J Nonlinear Sci, 2009, 19: 665–715MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sedov L. Two-Dimensional Problems of Hydrodynamics and Aerodynamics. Moscow: Izdatel’stvo Nauka, 1980zbMATHGoogle Scholar
  12. 12.
    Sueur F. Motion of a particle immersed in a two dimensional incompressible perfect fluid and point vortex dynamics. In: Particles in Flows. Cham: Birkhäuser, 2017, 139–216CrossRefGoogle Scholar
  13. 13.
    Turkington B. On the evolution of a concentrated vortex in an ideal fluid. Arch Ration Mech Anal, 1987, 97: 75–87MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut de Mathématiques de Bordeaux, CNRS UMR 5251Université de BordeauxTalenceFrance

Personalised recommendations