Advertisement

Science China Mathematics

, Volume 62, Issue 6, pp 1143–1166 | Cite as

Mehler’s formula and functional calculus

  • Nicolas LernerEmail author
Articles
  • 19 Downloads

Abstract

We show that Mehler’s formula can be used to handle several formulas involving the quantization of singular Hamiltonians. In particular, we diagonalize in the Hermite basis the Weyl quantization of the characteristic function of several domains of the phase space.

Keywords

Mehler’s formula quantization rough Hamiltonians 

MSC(2010)

46F12 81S30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amour L, Jager L, Nourrigat J. Lower bounds for pseudodifferential operators with a radial symbol. J Math Pures Appl (9), 2015, 103: 1157–1162MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Askey R, Gasper G. Positive Jacobi polynomial sums. II. Amer J Math, 1976, 98: 709–737MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Feldheim E. Développments en série de polynomes d’Hermite et de Laguerre á l’aide des transformations de Gauss et de Henkel. III. Proc Kon Ned Akad Wet, 1940, 43: 379–386MathSciNetzbMATHGoogle Scholar
  4. 4.
    Flandrin P. Maximum signal energy concentration in a time-frequency domain. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE, 1988, 2176–2179Google Scholar
  5. 5.
    Flandrin P. Time-Frequency/Time-Scale Analysis. Wavelet Analysis and Its Applications, vol. 10. San Diego: Academic Press, 1999Google Scholar
  6. 6.
    Hlawatsch F, Flandrin P. The interference structure of the Wigner distribution and related time-frequency signal representations. In: The Wigner Distribution. Amsterdam: Elsevier, 1997, 59–133Google Scholar
  7. 7.
    Hörmander L. Symplectic classiffication of quadratic forms, and general Mehler formulas. Math Z, 1995, 219: 413–449MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hörmander L. The Analysis of Linear Partial Differential Operators. III. Classics in Mathematics. Berlin: Springer, 2007Google Scholar
  9. 9.
    Lerner N. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators. Pseudo-Differential Operators Theory and Applications, vol. 3. Basel: Birkhäuser Verlag, 2010Google Scholar
  10. 10.
    Lieb E H, Ostrover Y. Localization of multidimensional Wigner distributions. J Math Phys, 2010, 51: 102101MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Unterberger A. Oscillateur harmonique et opérateurs pseudo-différentiels. Ann Inst Fourier (Grenoble), 1979, 29: 201–221MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsSorbonne UniversitéParisFrance

Personalised recommendations