Advertisement

The peeling property of Bondi-Sachs metrics for nonzero cosmological constants

  • Fangquan Xie
  • Xiao ZhangEmail author
Articles
  • 1 Downloads

Abstract

In this paper, we show that the peeling property still holds for Bondi-Sachs metrics with nonzero cosmological constants under the boundary condition given by Sommerfeld’s radiation condition together with three nontrivial Λ-independent functions B; a and b. This should indicate that the new boundary condition is natural. Moreover, we construct some nonstationary vacuum Bondi-Sachs metrics without Bondi news, which Newman-Penrose quantities fall faster than usual. This provides a new feature of gravitational waves for nonzero cosmological constants.

Keywords

Bondi-Sachs metric peeling property cosmological constant 

MSC(2010)

83C30 83C35 53B50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11571345 and 11731001) and Hua Loo-Keng Key Laboratory of Mathematics, National Center for Mathematics and Interdisciplinary Sciences, Center for Excellence in Mathematical Sciences, Hua Loo-Keng Center for Mathematical Sciences of Chinese Academy of Sciences.

References

  1. 1.
    Ashtekar A, Bonga B, Kesavan A. Asymptotics with a positive cosmological constant, I: Basic framework. Classical Quantum Gravity, 2015, 32: 025004MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ashtekar A, Bonga B, Kesavan A. Asymptotics with a positive cosmological constant, II: Linear fields on de Sitter spacetime. Phys Rev D, 2015, 92: 044011MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ashtekar A, Bonga B, Kesavan A. Asymptotics with a positive cosmological constant, III: The quadrupole formula. Phys Rev D, 2015, 92: 104032MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ashtekar A, Bonga B, Kesavan A. Gravitational waves from isolated systems: Surprising consequences of a positive cosmological constant. Phys Rev Lett, 2016, 116: 051101CrossRefzbMATHGoogle Scholar
  5. 5.
    Bishop N T. Gravitational waves in a de Sitter universe. Phys Rev D, 2016, 93: 044025MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bondi H, van der Burg M G J, Metzner A W K. Waves from axi-symmetric isolated systems. Proc R Soc Lond Ser A Math Phys Eng Sci, 1962, 269: 21–52zbMATHGoogle Scholar
  7. 7.
    Date G, Hoque S J. Gravitational waves from compact sources in de Sitter background. Phys Rev D, 2016, 94: 064039MathSciNetCrossRefGoogle Scholar
  8. 8.
    Date G, Hoque S J. Cosmological horizon and the quadrupole formula in de Sitter background. Phys Rev D, 2017, 96: 044026MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ge H, Luo M X, Su Q, et al. Bondi-Sachs metrics and photon rockets. Gen Relativity Gravitation, 2011, 43: 2729–2742MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    He H, Cao Z. New Bondi-type outgoing boundary condition for the Einstein equations with cosmological constant. Internat J Modern Phys D, 2015, 24: 1550081MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Huang W-L, Yau S T, Zhang X. Positivity of the Bondi mass in Bondi’s radiating spacetimes. Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl, 2006, 17: 335–349MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Penrose R. Zero rest mass fields including gravitation: Asymptotic behavior. Proc R Soc Lond Ser A Math Phys Eng Sci, 1965, 284: 159–203zbMATHGoogle Scholar
  13. 13.
    Sachs R K. Waves in asymptotically flat space-time. Proc R Soc Lond Ser A Math Phys Eng Sci, 1962, 270: 103–126zbMATHGoogle Scholar
  14. 14.
    Saw V-L. Mass-loss of an isolated gravitating system due to energy carried away by gravitational waves with a cosmo- logical constant. Phys Rev D, 2016, 94: 104004MathSciNetCrossRefGoogle Scholar
  15. 15.
    Saw V-L. Behaviour of asymptotically electro-ι spacetimes. Phys Rev D, 2017, 95: 084038MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhang X. Recent progress on the positive energy theorem. Internat J Modern Phys A, 2015, 30: 1545018MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Mathematics, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  2. 2.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations