Advertisement

Horizontal and vertical mutation fans

  • Kiyoshi Igusa
Articles
  • 8 Downloads

Abstract

We introduce diagrams for m-cluster categories which we call “horizontal” and “vertical” mutation fans. These are analogous to the mutation fans (also known as “semi-invariant pictures” or “scattering diagrams”) for the standard (m = 1) cluster case, which are dual to the poset of finitely generated torsion classes. The purpose of these diagrams is to visualize mutations and analogues of maximal green sequences in the m-cluster category with special emphasis on the c-vectors (the “brick” labels).

Keywords

exceptional sequence m-cluster category semi-invariant pictures t-structures c-vectors g-vectors silting objects simple minded collections 

MSC(2010)

18E30 16G20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author thanks the Chern Institute of Mathematics and organizers of the Workshop for their hospitality and the participants and referees for their inspiring comments.

References

  1. 1.
    Apruzzese P J, Igusa K. Stability conditions for affine type A. ArXiv:1804.09100, 2018Google Scholar
  2. 2.
    Barnard E, Carroll A, Zhu S J. Minimal inclusions of torsion classes. ArXiv:1710.08837, 2017Google Scholar
  3. 3.
    Beilinson A A, Bernstein J. Deligne P. Analyse et Topologie sur les espaces singuliers Vol. I. Astérisque, vol. 100. Paris: Soc Math France, 1982Google Scholar
  4. 4.
    Bridgeland T. Spaces of stability conditions. ArXiv:math/0611510, 2006zbMATHGoogle Scholar
  5. 5.
    Bridgeland T. Stability conditions on triangulated categories. Ann of Math (2), 2007, 166: 317–345MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brüstle T, Dupont G, Pérotin M. On maximal green sequences. Int Math Res Not IMRN, 2014, 2014: 4547–4586MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brüstle T, Hermes S, Igusa K, et al. Semi-invariant pictures and two conjectures on maximal green sequences. J Algebra, 2017, 473: 80–109MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brüstle T, Smith D, Treffinger H. Stability conditions, tau-tilting theory and maximal green sequences. ArXiv: 1705.08227, 2017Google Scholar
  9. 9.
    Buan A B, Marsh R J, Reineke M, et al. Tilting theory and cluster combinatorics. Adv Math, 2006, 204: 572–618MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Buan A B, Reiten I, Thomas H. From m-clusters to m-noncrossing partitions via exceptional sequences. Math Z, 2012, 271: 1117–1139MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chindris C. Cluster fans, stability conditions, and domains of semi-invariants. Trans Amer Math Soc, 2011, 363: 2171–2190MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Crawley-Boevey W. Exceptional sequences of representations of quivers. In: Representations of Algebras. CMS Conf Proc, vol. 14. Providence: Amer Math Soc, 1993, 117–124Google Scholar
  13. 13.
    Demonet L, Iyama O, Jasso G. tilting finite algebras, bricks and g-vectors. Int Math Res Not IMRN, 2017, 2017: 1–41Google Scholar
  14. 14.
    Fomin S, Reading N. Generalized cluster complexes and Coxeter combinatorics. Int Math Res Not IMRN, 2005, 44: 2709–2757MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fomin S, Zelevinsky A. Cluster algebras, IV: Coefficients. Compos Math, 2007, 143: 112–164MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gross M, Hacking P, Keel S, et al. Canonical bases for cluster algebras. J Amer Math Soc, 2018, 31: 497–608MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hermes S, Igusa K. The no gap conjecture for tame hereditary algebras. ArXiv:1601.04054, 2016Google Scholar
  18. 18.
    Igusa K. The category of noncrossing partitions. ArXiv:1411.0196, 2014Google Scholar
  19. 19.
    Igusa K. m-noncrossing trees. J Algebra Appl, 2017, 2017: 1850187CrossRefGoogle Scholar
  20. 20.
    Igusa K. Enumerating m-clusters using exceptional sequences. Http://people.brandeis.edu/sigusa/Papers/mExSeq.pdf
  21. 21.
    Igusa K. Linearity of stability conditions. ArXiv:1706.06986, 2017Google Scholar
  22. 22.
    Igusa K. Maximal green sequences for cluster tilted algebras of finite type. ArXiv:1706.06503, 2017Google Scholar
  23. 23.
    Igusa K. Are finite type picture groups virtually special? Http://homepage.divms.uiowa.edu/~fbleher/CGMRT2017/Slides/Igusa2017Notes.pdf
  24. 24.
    Igusa K, Kim M, Todorov G, et al. Periodic trees and propictures. Http://people.brandeis.edu/~igusa/Papers/PeriodicProPics.pdf
  25. 25.
    Igusa K, Orr K, Todorov G, et al. Modulated semi-invariants. ArXiv:1507.03051, 2015Google Scholar
  26. 26.
    Igusa K, Ostroff J. Mixed cobinary trees. J Algebra Appl, 2017, https://doi.org/10.1142/S0219498818501700 Google Scholar
  27. 27.
    Igusa K, Todorov G. Signed exceptional sequences and the cluster morphism category. ArXiv:1706.2222, 2017Google Scholar
  28. 28.
    Igusa K, Todorov G. Picture groups and maximal green sequences. Http://people.brandeis.edu/~igusa/Papers/GreenSeq.pdf
  29. 29.
    Igusa K, Todorov G, Weyman J. Periodic trees and semi-invariants. ArXiv:1407.0619, 2014Google Scholar
  30. 30.
    Igusa K, Todorov G, Weyman J. Picture groups of finite type and cohomology in type An. ArXiv:1609.02636, 2016Google Scholar
  31. 31.
    Igusa K, Zhou Y. Tame hereditary algebras have finitely many m-maximal green sequences. ArXiv:1706.09118, 2017Google Scholar
  32. 32.
    Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent Math, 2008, 172: 117–168MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Keller B. On cluster theory and quantum dilogarithm identities. In: Representations of Algebras and Related Topics. EMS Series of Congress Reports. Zürich: Eur Math Soc, 2011, 85–116CrossRefGoogle Scholar
  34. 34.
    Keller B, Vossieck D. Aisles in derived categories. Bull Soc Math Belg, 1988, 40: 239–253MathSciNetzbMATHGoogle Scholar
  35. 35.
    King A, Qiu Y. Exchange graphs and Ext quivers. Adv Math, 2015, 285: 1106–1154MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Koenig S, Yang D. Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras. Doc Math, 2014, 19: 403–438MathSciNetzbMATHGoogle Scholar
  37. 37.
    Muller G. The existence of a maximal green sequence is not invariant under quiver mutation. Electron J Combin, 2016, 23: 1–23MathSciNetzbMATHGoogle Scholar
  38. 38.
    Nakanishi T, Zelevinsky A. On tropical dualities in cluster algebras. Contemp Math, 2012, 565: 217–226MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Qiu Y. C-sortable words as green mutation sequences. Proc Lond Math Soc (3), 2015, 111: 1052–1070MathSciNetzbMATHGoogle Scholar
  40. 40.
    Reineke M. The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli. Invent Math, 2003, 152: 349–368MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Ringel C M. The braid group action on the set of exceptional sequences of a hereditary Artin algebra. In: Abelian Group Theory and Related Topics. Contemporary Mathematics, vol. 171. Providence: Amer Math Soc, 1994, 339–352CrossRefGoogle Scholar
  42. 42.
    Speyer D, Thomas H. Acyclic cluster algebras revisited. In: Algebras, Quivers and Representations. Proceedings of the Abel Symposium, vol. 8. Berlin-Heidelberg: Springer, 2013, 275–298CrossRefGoogle Scholar
  43. 43.
    Thomas H. Defining an m-cluster category. J Algebra, 2007, 318: 37–46MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Treffinger H. On sign coherence of c-vectors. ArXiv:1711.01152, 2017Google Scholar
  45. 45.
    Woolf J. Stability conditions, torsion theories and tilting. J Lond Math Soc (2), 2010, 82: 663–682MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsBrandeis UniversityWalthamUSA

Personalised recommendations