Science China Mathematics

, Volume 59, Issue 3, pp 609–616 | Cite as

Judicious partitions of weighted hypergraphs

Articles

Abstract

Let G be a weighted hypergraph with edges of size i for i = 1, 2. Let wi denote the total weight of edges of size i and a be the maximum weight of an edge of size 1. We study the following partitioning problem of Bollobás and Scott: Does there exist a bipartition such that each class meets edges of total weight at least \ \(frac{{w1 - \alpha }}{2} + \frac{{2w2}}{3}\)? We provide an optimal bound for balanced bipartition of weighted hypergraphs, partially establishing this conjecture. For dense graphs, we also give a result for partitions into more than two classes. In particular, it is shown that any graph G with m edges has a partition V1,...,Vk such that each vertex set meets at least \(\left( {1 - \left( {1 - \tfrac{1} {k}} \right)^2 } \right)m + o(m)\) edges, which answers a related question of Bollobás and Scott.

Keywords

judicious partition balanced bipartition weighted hypergraph 

MSC(2010)

05C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollobás B, Scott A D. Judicious partitions of graphs. Period Math Hungar, 1993, 26: 125–137CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Bollobás B, Scott A D. Exact bounds for judicious partitions of graphs. Combinatorica, 1999, 19: 473–486CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bollobás B, Scott A D. Judicious partitions of 3-uniform hypergraphs. Eur J Combinat, 2000, 21: 289–300CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Bollobás B, Scott A D. Problems and results on judicious partitions. Random Structures Algorithms, 2002, 21: 414–430CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Bollobás B, Scott A D. Judicious partitions of bounded-degree graphs. J Graph Theory, 2004, 46: 131–143CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Edwards C S. Some extremal properties of bipartite graphs. Canad J Math, 1973, 25: 475–485CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Edwards C S. An improved lower bound for the number of edges in a largest bipartite subgraph. In: Proceedings of the 2nd Czechoslovak Symposium on Graph Theory. Prague: Academia, 1975, 167–181Google Scholar
  8. 8.
    Haslegrave J. The Bollobás-Thomason conjecture for 3-uniform hypergraphs. Combinatorica, 2012, 32: 451–471CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Janson S, Luczak T, Ruci´nski A. Random Graphs. New York: Wiley, 2000CrossRefGoogle Scholar
  10. 10.
    Karp R M. Reducibility among combinatorial problems. In: Complexity of Computer Computations. New York: Plenum Press, 1972, 85–103CrossRefGoogle Scholar
  11. 11.
    Ma J, Yen P, Yu X. On several partitioning problems of Bollobás and Scott. J Combin Theory Ser B, 2010, 100: 631–649CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Porter T D. On a bottleneck bipartition conjecture of Erd¨os. Combinatorica, 1992, 12: 317–321CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Scott A D. Judicious partitions and related problems. In: Surveys in Combinatorics. London Math Soc Lecture Notes Ser, vol. 327. Cambridge: Cambridge University Press, 2005, 95–117MathSciNetMATHGoogle Scholar
  14. 14.
    Xu B, Yan J, Yu X. Balanced judicious partitions of graphs. J Graph Theory, 2010, 63: 210–225MathSciNetMATHGoogle Scholar
  15. 15.
    Xu B, Yan J, Yu X. A note on balanced bipartitions. Discrete Math, 2010, 310: 2613–2617MathSciNetGoogle Scholar
  16. 16.
    Xu B, Yu X. Judicious k-partitions of graphs. J Combin Theory Ser B, 2009, 99: 324–337CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Xu B, Yu X. Better bounds for k-partitions of graphs. Combinatorics. Probab Comput, 2011, 20: 631–640CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Xu B, Yu X. On judicious bisections of graphs. J Combin Theory Ser B, 2014, 106: 30–69CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations