Science China Mathematics

, Volume 60, Issue 9, pp 1647–1660 | Cite as

Existence of solutions for a critical fractional Kirchhoff type problem in ℝ N

  • MingQi Xiang
  • BinLin Zhang
  • Hong Qiu


This paper concerns with the existence of solutions for the following fractional Kirchhoff problem with critical nonlinearity:
$${\left( {\int {\int {_{{\mathbb{R}^{2N}}}\frac{{{{\left| {u\left( x \right) - u\left( y \right)} \right|}^2}}}{{{{\left| {x - y} \right|}^{N + 2s}}}}dxdy} } } \right)^{\theta - 1}}{\left( { - \Delta } \right)^s}u = \lambda h\left( x \right){u^{p - 1}} + {u^{2_s^* - 1}} in {\mathbb{R}^N},$$
where (−Δ) s is the fractional Laplacian operator with 0 < s < 1, 2 s * = 2N/(N − 2s), N > 2s, p ∈ (1, 2 s *), θ ∈ [1, 2 s */2), h is a nonnegative function and λ a real positive parameter. Using the Ekeland variational principle and the mountain pass theorem, we obtain the existence and multiplicity of solutions for the above problem for suitable parameter λ > 0. Furthermore, under some appropriate assumptions, our result can be extended to the setting of a class of nonlocal integro-differential equations. The remarkable feature of this paper is the fact that the coefficient of fractional Laplace operator could be zero at zero, which implies that the above Kirchhoff problem is degenerate. Hence our results are new even in the Laplacian case.


fractional Laplacian Kirchhoff problem mountain pass theorem Ekeland variational principle 


35R11 35A15 47G20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Natural Science Foundation of China (Grant Nos. 11601515 and 11401574), the Fundamental Research Funds for the Central Universities (Grant No. 3122015L014), and the Doctoral Research Foundation of Heilongjiang Institute of Technology (Grant No. 2013BJ15). The authors thank Professor Giovanni Molica Bisci for useful suggestions and comments.


  1. 1.
    Alves C O. Multiple positive solutions for equations involving critical Sobolev exponent in RN. Electron J Differential Equations, 1997, 13: 1–10Google Scholar
  2. 2.
    Alves C O, Goncalves J V, Miyagaki O H. Multiple positive solutions for semilinear elliptic equations in RN involving critical exponents. Nonlinear Anal, 1998, 32: 41–51MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349–381MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Applebaum D. Lévy processes—from probability to finance quantum groups. Notices Amer Math Soc, 2004, 51: 1336–1347MathSciNetzbMATHGoogle Scholar
  5. 5.
    Autuori G, Fiscella A, Pucci P. Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal, 2015, 125: 699–714MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Autuori G, Pucci P. Elliptic problems involving the fractional Laplacian in RN. J Differential Equations, 2013, 255: 2340–2362MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barrios B, Colorado E, de Pablo A, et al. On some critical problems for the fractional Laplacian operator. J Differential Equations, 2012, 252: 6133–6162MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bisci G M, Rădulescu V. Ground state solutions of scalar field fractional for Schrödinger equations. Calc Var Partial Differential Equations, 2015, 54: 2985–3008MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bisci G M, Rădulescu V, Servadei R. Variational Methods for Nonlocal Fractional Problems. Cambridge: Cambridge University Press, 2016CrossRefzbMATHGoogle Scholar
  10. 10.
    Bisci G M, Servadei R. A bifurcation result for nonlocal fractional equations. Anal Appl, 2015, 13: 371–394MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bisci G M, Servadei R. Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent. Adv Difference Equ, 2015, 20: 635–660MathSciNetzbMATHGoogle Scholar
  12. 12.
    Brézis H, Lieb E. A relation between pointwise convergence of functionals and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486–490MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Caffarelli L. Non-local diffusions, drifts and games. In: Nonlinear Partial Differential Equations. Abel Symposia, vol. 7. Berlin-Heidelberg: Springer, 2012, 37–52CrossRefGoogle Scholar
  14. 14.
    Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32: 1245–1260MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cao D M, Li G B, Zhou H S. Multiple solutions for nonhomogeneous elliptic equations with critical Sobolev exponent. Proc Roy Soc Edinburgh Sect A, 1994, 124: 1177–1191MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chabrowski J. On multiple solutions for the non-homogeneous p-Laplacian with a critical Sobolev exponent. Differ Integral Equ Appl, 1995, 8: 705–716zbMATHGoogle Scholar
  17. 17.
    Chang X, Wang Z Q. Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity, 2013, 26: 479–494MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cotsiolis A, Tavoularis N K. Best constants for Sobolev inequalities for higher order fractional derivatives. J Math Anal Appl, 2004, 295: 225–236MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Di Blasio G, Volzone B. Comparison and regularity results for the fractional Laplacian via symmetrization methods. J Differential Equations, 2012, 253: 2593–2615MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521–573MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47: 324–353MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fiscella A, Valdinoci E. A critical Kirchhoff type problem involving a nonlocal operator. Nonliear Anal, 2014, 94: 156–170MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Goncalves J V, Alves C O. Existence of positive solutions for m-Laplacian equations in RN involving critical exponents. Nonlinear Anal, 1998, 32: 53–70MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys Lett A, 2000, 268: 298–305MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Laskin N. Fractional Schrödinger equation. Phys Rev E, 2002, 66: 056108MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mawhin J, Willem M. Critical Point Theory and Hamilton Systems. Berlin: Springer-Verlag, 1989CrossRefzbMATHGoogle Scholar
  27. 27.
    Pucci P, Saldi S. Critical stationary Kirchhoff equations in RN involving nonlocal operators. Rev Mat Iberoam, 2016, 32: 1–22MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pucci P, Xiang M Q, Zhang B L. Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in RN. Calc Var Partial Differential Equations, 2015, 54: 2785–2806MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Pucci P, Xiang M Q, Zhang B L. Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv Nonlinear Anal, 2016, 5: 27–55MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ros-Oton X, Serra J. Nonexistence results for nonlocal equations with critical and supercritical nonlinearities. Comm Partial Differential Equations, 2015, 40: 115–133MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ros-Oton X, Serra J, Valdinoci E. Pohozaev identies for anisotropic integro-differential operators. ArXiv:1502.01431v1, 2015Google Scholar
  32. 32.
    Secchi S. Ground state solutions for nonlinear fractional Schrödinger in RN. J Math Phys, 2013, 54: 031501MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Servadei R, Valdinoci E. Mountain Pass solutions for non-local elliptic operators. J Math Anal Appl, 2012, 389: 887–898MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Servadei R, Valdinoci E. A Brézis-Nirenberg result for non-local critical equations in low dimension. Commun Pure Appl Anal, 2013, 12: 2445–2464MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Servadei R, Valdinoci E. The Brézis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367: 67–102MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Servadei R, Valdinoci E. Fractional Laplacian equations with critical Sobolev exponent. Rev Mat Complut, 2015, 28: 655–676MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Xiang M Q, Bisci G M, Tian G H, et al. Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian. Nonlinearity, 2016, 29: 357–374MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Xiang M Q, Zhang B L. Degenerate Kirchhoff problems involving the fractional p-Laplacian without the (AR) condition. Complex Var Elliptic Equ, 2015, 60: 1277–1287MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Xiang M Q, Zhang B L, Ferrara M. Multiplicity results for the nonhomogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities. Proc Roy Soc A, 2015, 471: 1–14CrossRefGoogle Scholar
  40. 40.
    Xiang M Q, Zhang B L, Rădulescu V. Existence of solutions for perturbed fractional p-Laplacian equations. J Differential Equations, 2016, 260: 1392–1413MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Xiang M Q, Zhang B L, Rădulescu V. Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian. Nonlinearity, 2016, 29: 3186–3205MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.College of ScienceCivil Aviation University of ChinaTianjinChina
  2. 2.Department of MathematicsHeilongjiang Institute of TechnologyHarbinChina

Personalised recommendations