Science China Mathematics

, Volume 58, Issue 2, pp 221–232 | Cite as

Objective triangle functors

Articles Progress of Projects Supported by NSFC


An additive functor \(F:\mathcal{A} \to \mathcal{B}\) between additive categories is said to be objective, provided any morphism f in \(\mathcal{A}\) with F(f) = 0 factors through an object K with F(K) = 0. We concentrate on triangle functors between triangulated categories. The first aim of this paper is to characterize objective triangle functors F in several ways. Second, we are interested in the corresponding Verdier quotient functors \(V_F :\mathcal{A} \to \mathcal{A}/KerF\), in particular we want to know under what conditions VF is full. The third question to be considered concerns the possibility to factorize a given triangle functor F = F2F1 with F1 a full and dense triangle functor and F2 a faithful triangle functor. It turns out that the behavior of splitting monomorphisms and splitting epimorphisms plays a decisive role.


triangulated category triangle functor objective functor Verdier functor 


16E30 18A22 16E35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bocklandt R. Graded Calabi Yau algebras of dimension 3. With an appendix “The signs of Serre functor” by Van den Bergh M. J Pure Appl Algebra, 2008, 212: 14–32CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Gelfand S I, Manin Y I. Methods of Homological Algebra. New York: Springer-Verlag, 1997Google Scholar
  3. 3.
    Happel D. Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. Cambridge: Cambridge University Press, 1988CrossRefMATHGoogle Scholar
  4. 4.
    Kashiwara M, Schapira P. Sheaves on Manifold. New York: Springer-Verlag, 1990CrossRefGoogle Scholar
  5. 5.
    Keller B. Derived categories and their uses. In: Handbook of Algebra, vol. 1. Amsterdam: North-Holland, 1996, 671–701Google Scholar
  6. 6.
    Krause H. Localization theory for triangulated categories. In: Triangulated categories. London Math Soc Lecture Note Ser, vol. 375. Cambridge: Cambridge University Press, 2010, 161–235CrossRefGoogle Scholar
  7. 7.
    Neeman A. Triangulated Categories. Princeton, NJ: Princeton University Press, 2001CrossRefMATHGoogle Scholar
  8. 8.
    Rickard J. Morita theory for derived categories. J London Math Soc, 1989, 39: 436–456CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Ringel C M, Zhang P. From submodule categories to preprojective algebras. Math Z, 2014, 278: 55–73CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Verdier J L. Des catégories dérivées abéliennes. Asterisque, 1996, 239: 253ppGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations