Advertisement

Science China Mathematics

, Volume 58, Issue 1, pp 143–160 | Cite as

Oscillation of fourth-order delay dynamic equations

  • ChengHui Zhang
  • Ravi P. Agarwal
  • Martin Bohner
  • TongXing LiEmail author
Articles

Abstract

This paper is concerned with oscillatory behavior of a class of fourth-order delay dynamic equations on a time scale. In the general time scales case, four oscillation theorems are presented that can be used in cases where known results fail to apply. The results obtained can be applied to an equation which is referred to as Swift-Hohenberg delay equation on a time scale. These criteria improve a number of related contributions to the subject. Some illustrative examples are provided.

Keywords

Swift-Hohenberg equation oscillation delay dynamic equation fourth-order time scale 

MSC(2010)

34K11 34N05 39A10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal R P, Akin-Bohner E, Sun S. Oscillation criteria for fourth-order nonlinear dynamic equations. Comm Appl Nonlinear Anal, 2011, 18: 1–16MathSciNetGoogle Scholar
  2. 2.
    Agarwal R P, Bohner M. An oscillation criterion for first order delay dynamic equations. Funct Differ Equ, 2009, 16: 11–17MathSciNetzbMATHGoogle Scholar
  3. 3.
    Agarwal R P, Bohner M, Saker S H. Oscillation of second order delay dynamic equations. Can Appl Math Q, 2005, 13: 1–17MathSciNetzbMATHGoogle Scholar
  4. 4.
    Agarwal R P, Grace S R, O’Regan D. Oscillation criteria for certain nth order differential equations with deviating arguments. J Math Anal Appl, 2001, 262: 601–622CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Agarwal R P, Grace S R, O’Regan D. Oscillation Theory for Second Order Dynamic Equations, volume 5 of Series in Mathematical Analysis and Applications. London: Taylor and Francis Ltd., 2003CrossRefGoogle Scholar
  6. 6.
    Akin-Bohner E, Bohner M, Saker S H. Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations. Electron Trans Numer Anal, 2007, 27: 1–12MathSciNetzbMATHGoogle Scholar
  7. 7.
    Anderson D R, Saker S H. Interval oscillation criteria for forced Emden-Fowler functional dynamic equations with oscillatory potential. Sci China Math, 2013, 56: 561–576CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Bartušek M, Cecchi M, Došlá Z, et al. Fourth-order differential equation with deviating argument. Abstr Appl Anal, 2012, 2012: 1–17Google Scholar
  9. 9.
    Berchio E, Ferrero A, Gazzola F, et al. Qualitative behavior of global solutions to some nonlinear fourth order differential equations. J Differential Equations, 2011, 251: 2696–2727CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston: Birkhäuser, 2001CrossRefGoogle Scholar
  11. 11.
    Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhäuser, 2003CrossRefzbMATHGoogle Scholar
  12. 12.
    Erbe L. Oscillation criteria for second order linear equations on a time scale. Can Appl Math Q, 2001, 9: 345–375MathSciNetzbMATHGoogle Scholar
  13. 13.
    Erbe L, Peterson A, Saker S H. Hille and Nehari type criteria for third-order dynamic equations. J Math Anal Appl, 2007, 329: 112–131CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Erbe L, Peterson A, Saker S H. Oscillation criteria for second-order nonlinear delay dynamic equations. J Math Anal Appl, 2007, 333: 505–522CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Fite W B. Concerning the zeros of the solutions of certain differential equations. Trans Amer Math Soc, 1918, 19: 341–352CrossRefMathSciNetGoogle Scholar
  16. 16.
    Grace S R. Oscillation of even order nonlinear functional differential equations with deviating arguments. Math Slovaca, 1991, 41: 189–204MathSciNetzbMATHGoogle Scholar
  17. 17.
    Grace S R, Agarwal R P, Bohner M, et al. Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations. Commun Nonlinear Sci Numer Simul, 2009, 14: 3463–3471CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Grace S R, Agarwal R P, Pinelas S. On the oscillation of fourth order superlinear dynamic equations on time scales. Dynam Systems Appl, 2011, 20: 45–54MathSciNetzbMATHGoogle Scholar
  19. 19.
    Grace S R, Agarwal R P, Sae-jie W. Monotone and oscillatory behavior of certain fourth order nonlinear dynamic equations. Dynam Systems Appl, 2010, 19: 25–32MathSciNetzbMATHGoogle Scholar
  20. 20.
    Grace S R, Bohner M, Sun S. Oscillation of fourth-order dynamic equations. Hacet J Math Stat, 2010, 39: 545–553MathSciNetzbMATHGoogle Scholar
  21. 21.
    Grace S R, Lalli B S. Oscillation theorems for n-th order delay differential equations. J Math Anal Appl, 1983, 91: 352–366CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Grace S R, Lalli B S. Oscillation theorems for nth order nonlinear differential equations with deviating arguments. Proc Amer Math Soc, 1984, 90: 65–70MathSciNetzbMATHGoogle Scholar
  23. 23.
    Grace S R, Lalli B S. Oscillation theorems for damped differential equations of even order with deviating arguments. SIAM J Math Anal, 1984, 15: 308–316CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Hassan T S. Oscillation of third order nonlinear delay dynamic equations on time scales. Math Comput Modelling, 2009, 49: 1573–1586CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Hilger S. Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math, 1990, 18: 18–56CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Howard H C. Oscillation criteria for even order differential equations. Ann Mat Pura Appl, 1964, 66: 221–231CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Karpuz B, Öcalan Ö, Öztürk S. Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equations. Glasg Math J, 2010, 52: 107–114CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Kiguradze I T, Chanturia T A. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Dordrecht: Kluwer Academic Publishers, 1993CrossRefzbMATHGoogle Scholar
  29. 29.
    Li T, Han Z, Sun S, et al. Oscillation results for third order nonlinear delay dynamic equations on time scales. Bull Malays Math Sci Soc, 2011, 34: 639–648MathSciNetzbMATHGoogle Scholar
  30. 30.
    Li T, Thandapani E, Tang S. Oscillation theorems for fourth-order delay dynamic equations on time scales. Bull Math Anal Appl, 2011, 3: 190–199MathSciNetGoogle Scholar
  31. 31.
    Peletier L A, Troy W C. Spatial Patterns: Higher Order Models in Physics and Mechanics. Boston, MA: Birkhäuser Boston Inc., 2001CrossRefGoogle Scholar
  32. 32.
    Řehák P. How the constants in Hille-Nehari theorems depend on time scales. Adv Difference Equ, 2006, 2006: 1–15Google Scholar
  33. 33.
    Sşahiner Y. Oscillation of second-order delay differential equations on time scales. Nonlinear Anal, 2005, 63: 1073–1080CrossRefGoogle Scholar
  34. 34.
    Saker S H. Oscillation Theory of Dynamic Equations on Time Scales, Second and Third Orders. Berlin: Lambert Academic Publishing, 2010Google Scholar
  35. 35.
    Thandapani E, Piramanantham V, Pinelas S. Oscillation theorems of fourth order nonlinear dynamic equations on time scales. Int J Pure Appl Math, 2012, 76: 455–468zbMATHGoogle Scholar
  36. 36.
    Zafer A. Oscillation criteria for even order neutral differential equations. Appl Math Lett, 1998, 11: 21–25CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Zhang C, Li T, Agarwal R P, et al. Oscillation results for fourth-order nonlinear dynamic equations. Appl Math Lett, 2012, 25: 2058–2065CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Zhang Q, Yan J. Oscillation behavior of even order neutral differential equations with variable coefficients. Appl Math Lett, 2006, 19: 1202–1206CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Zhang Q, Yan J, Gao L. Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients. Comput Math Appl, 2010, 59: 426–430CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • ChengHui Zhang
    • 1
  • Ravi P. Agarwal
    • 2
  • Martin Bohner
    • 3
  • TongXing Li
    • 1
    • 4
    Email author
  1. 1.School of Control Science and EngineeringShandong UniversityJinanChina
  2. 2.Department of MathematicsTexas A&M University-KingsvilleKingsvilleUSA
  3. 3.Department of Mathematics and StatisticsMissouri University of Science and TechnologyRollaUSA
  4. 4.Department of MathematicsLinyi UniversityLinyiChina

Personalised recommendations