Advertisement

Science China Mathematics

, Volume 57, Issue 11, pp 2247–2272 | Cite as

New geometric flows on Riemannian manifolds and applications to Schrödinger-Airy flows

  • XiaoWei SunEmail author
  • YouDe Wang
Articles

Abstract

In this paper, a class of new geometric flows on a complete Riemannian manifold is defined. The new flow is related to the generalized (third order) Landau-Lifshitz equation. On the other hand it could be thought of as a special case of the Schrödinger-Airy flow when the target manifold is a Kähler manifold with constant holomorphic sectional curvature. We show the local existence of the new flow on a complete Riemannian manifold with some assumptions on Ricci tensor. Moreover, if the target manifolds are Einstein or some certain type of locally symmetric spaces, the global results are obtained.

Keywords

new geometric flow Schrödinger-Airy flow global existence 

MSC(2010)

58J60 35Q53 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bejenaru I, Ionescu A D, Kenig C E, et al. Global Schrödinger maps in dimensions d ⩾ 2: Small data in the critical Sobolev spaces. Ann Math, 2011, 173: 1443–1506MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chang N H, Shatah J, Uhlenbeck K. Schrödinger maps. Comm Pure Appl Math, 2000, 53: 590–602MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Colliander J, Keel M, Staffilani G, et al. Sharp global well-posedness for KdV and modified KdV on ℝ and \(\mathbb{T}\). J Amer Math Soc, 2003, 16: 705–749MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Date E, Jimbo M, Kashiwara M, et al. Landau-Lifshitz equation: Solitons, quasi-periodic solutions and infinite-dimensional Lie algebras. J Phys A, 1983, 16: 221–236MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ding Q, Wang Y D. Geometric KdV flows, motions of curves and the third-order system of the AKNS hierarchy. Internat J Math, 2011, 22: 1013–1029MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ding W Y. On the Schrödinger flows. Proc ICM Beijing, 2002, 283–292Google Scholar
  7. 7.
    Ding W Y, Wang Y D. Schrödinger flows of maps into symplectic manifolds. Sci China Ser A, 1998, 41: 746–755MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ding W Y, Wang Y D. Local Schrödinger flow into Kähler manifolds. Sci China Ser A, 2001, 44: 1446–1464MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Friedman A. Partial Differential Equations of Parabolic Type. Englewood Cliffs, NJ: Prentice-Hall Inc., 1964zbMATHGoogle Scholar
  10. 10.
    Fukumoto Y, Miyazaki T. Three-dimensional distortions of a vortex filament with axial velocity. J Fluid Mech, 1991, 222: 369–416MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gerdjikov V S, Kostov N A. Reductions of multicomponent mKdV equations on symmetric spaces of DIII-type. Symmatry Integrability Geom Methods Appl, 2008, 4: 29–58MathSciNetGoogle Scholar
  12. 12.
    Golubchik I Z, Sokolov V V. Multicomponent generalization of the hierarchy of the Landau-Lifshitz equation. Theo Math Phys, 2000, 124: 909–917MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hasegawa A, Kodama Y. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J Quantum Elec, 1987, 23: 510–524CrossRefGoogle Scholar
  14. 14.
    Hasimoto H. A soliton on a vortex filament. J Fluid mech, 1972, 51: 477–485CrossRefzbMATHGoogle Scholar
  15. 15.
    Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. Providence, RI: Amer Math Soc, 2001zbMATHGoogle Scholar
  16. 16.
    Hirota R. Exact envelope-soliton solutions of a nonlinear wave equation. J Math Phys, 1973, 14: 805–809MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Meshkov A G, Sokolov V V. Integrable evolution equations on the n-dimensional sphere. Comm Math Phys, 2002, 232: 1–18MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Moffatt H K, Ricca R L. Interpretation of invariants of the Betchov-Da Rios equations and of the Euler equations. Global Geom Turbulence, 1991, 268: 257–264MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nishiyama T, Tani A. Initial and initial-boundary value problems for a vortex filament with or without axial flow. SIAM J Math Anal, 1996, 27: 1015–1023MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Onodera E. A third-order dispersive flow for closed curves into Kähler manifolds. J Geom Anal, 2008, 18: 889–918.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Petersen P. Riemannian Geometry. New York: Springer Verlag, 1998CrossRefzbMATHGoogle Scholar
  22. 22.
    Ricca R L. Rediscovery of Da Rios equations. Nature, 1991, 352: 561–562CrossRefGoogle Scholar
  23. 23.
    Rodnianski I, Rubinstein Y A, Staffilani G. On the global well-posedness of the one-dimensional Schrodinger map flow. Analysis PDE, 2009, 2: 187–209MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Song C. The KdV curve and Schrödinger-Airy curve. Proc Amer Math Soc, 2012, 140: 635–644MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Song C, Yu J. The Cauchy problem of generalized Landau-Lifshitz equation into S n. Sci China Math, 2013, 56: 283–300MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sun X W, Wang Y D. KdV geometric flows on Kähler manifolds. Internat J Math, 2011, 22: 1–62MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sun X W, Wang Y D. Geometric Schrödinger-Airy Flows on Kähler Manifolds. Acta Math Sin (Engl Ser), 2013, 29: 209–240MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Tani A, Nishiyama T. Solvability of equations for motion of a vortex filament with or without axial flow. Publ Res Inst Math Sci, 1997, 33: 509–526MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Taylor M E. Partial Differential Equations III: Nonlinear Equations. New York: Springer-Verlag, 1997Google Scholar
  30. 30.
    Tsuchida T. New reductions of integrable matrix partial differential equations: Sp(m)-invariant systems. J Math Phys, 2010, 51: 053511–27MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tsuchida T, Wadati M. The coupled modified Korteweg-de Vries equations. J Phys Soc Japan, 1998, 67: 1175–1187MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Veselov A P. Finite-gap potentials and integrable systems on the sphere with a quadratic potential. Funct Anal Appl, 1980, 14: 48–50MathSciNetGoogle Scholar
  33. 33.
    Wang B, Han L, Huang C. Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26: 2253–2281MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Statistics and MathematicsCentral University of Finance and EconomicsBeijingChina
  2. 2.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations