Science China Mathematics

, Volume 57, Issue 8, pp 1561–1578 | Cite as

Bivariate Gončarov polynomials and integer sequences

  • Niraj Khare
  • Rudolph Lorentz
  • Catherine Huafei Yan
Articles

Abstract

Univariate Gončarov polynomials arose from the Gončarov interpolation problem in numerical analysis. They provide a natural basis of polynomials for working with u-parking functions, which are integer sequences whose order statistics are bounded by a given sequence u. In this paper, we study multivariate Gončarov polynomials, which form a basis of solutions for multivariate Gončarov interpolation problem. We present algebraic and analytic properties of multivariate Gončarov polynomials and establish a combinatorial relation with integer sequences. Explicitly, we prove that multivariate Gončarov polynomials enumerate k-tuples of integers sequences whose order statistics are bounded by certain weights along lattice paths in ℕ k . It leads to a higher-dimensional generalization of parking functions, for which many enumerative results can be derived from the theory of multivariate Gončarov polynomials.

Keywords

Gončarov polynomials interpolation parking functions order statistics 

MSC(2010)

05A15 05A10 41A05 41A63 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boas R P, Buck R C. Polynomial Expansion of Analytic Functions. Heidelberg: Springer-Verlag, 1958CrossRefGoogle Scholar
  2. 2.
    Gončarov V L. Theory of Interpolation and Approximation of Functions. Moscow: Gosudarstv Izdat Tehn-Teor Lit., 1954Google Scholar
  3. 3.
    He T. On multivariate Abel-Gontscharoff interpolation. In: Neamtu M, Saff E B, eds. Advances in Constructive Approximation. Nashville, TN: Nashboro Press, 2004, 210–226Google Scholar
  4. 4.
    He T, Hsu L C, Shiue P. On an extension of Abel-Gontscharoff’s expansion formula. Anal Theo Appl, 2005, 21: 359–369CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Kergin P A. A natural interpolation of ℂk functions. J Approx Theo, 1980, 29: 278–293CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Khare N, Lorentz R, Yan C H. A new generalizations of Abel-type identities. In preparation, 2014Google Scholar
  7. 7.
    Knuth D E. Sorting and Searching. The Art of Computer Programming, vol. 3. Reading, MA: Addison-Wesley, 1973Google Scholar
  8. 8.
    Konheim A G, Weiss B. An occupancy discipline and applications. SIAM J Appl Math, 1966, 14: 1266–1274CrossRefMATHGoogle Scholar
  9. 9.
    Kung J P S. A probabilistic interpretation of the Gončarov and related polynomials. J Math Anal Appl, 1981, 70: 349–351CrossRefMathSciNetGoogle Scholar
  10. 10.
    Kung J P S, Yan C H. Gončarov polynomials and parking functions. J Combin Theory Ser A, 2003, 102: 16–37CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Kung J P S, Yan C H. Expected sums of moments general parking functions. Ann Combin, 2003, 7: 481–493CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Kung J P S, Yan C H. Exact formula for moments of sums of classical parking functions. Adv Appl Math, 2003, 31: 215–241CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Lorentz R. Multivariate Birkhoff Interpolation. Lecture Notes in Mathematics, vol. 1516. Berlin: Springer-Verlag, 1992MATHGoogle Scholar
  14. 14.
    Pitman J, Stanley R. A polytope related to empirical distributions, plane trees, parking functions, and the associahedron. Discrete Comput Geom, 2002, 27: 603–634CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Stanley R. Enumerative Combinatorics, vol. 1. 2nd ed. Cambridge: Cambridge Univ Press, 2001Google Scholar
  16. 16.
    Stanley R. Hyperplane arrangements, interval orders, and trees. Proc Nat Acad Sci USA, 1996, 93: 2620–2625CrossRefMATHGoogle Scholar
  17. 17.
    Stanley R. Hyperplane arrangements, parking functions, and tree inversions. In: Sagan B, Stanley R, eds. Mathematical Essays in Honor of Gian-Carlo Rota. Boston-Basel: Birkhäuser, 1998, 359–375CrossRefGoogle Scholar
  18. 18.
    Yan C H. On the enumeration of generalized parking functions. In: Proceedings of the 31st Southeastern Conference on Combinatorics, Graph Theory, and Computing. Congr Numer, 2000, 147: 201–209MATHGoogle Scholar
  19. 19.
    Yan C H. Generalized parking functions, tree inversions and multicolored graphs. Adv Appl Math, 2001, 27: 641–670CrossRefMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Niraj Khare
    • 1
  • Rudolph Lorentz
    • 1
  • Catherine Huafei Yan
    • 2
  1. 1.Department of MathematicsTexas A&M University at QatarDohaQatar
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations