Science China Mathematics

, Volume 57, Issue 5, pp 903–962 | Cite as

Orlicz-Hardy spaces and their duals

Articles

Abstract

We establish the theory of Orlicz-Hardy spaces generated by a wide class of functions. The class will be wider than the class of all the N-functions. In particular, we consider the non-smooth atomic decomposition. The relation between Orlicz-Hardy spaces and their duals is also studied. As an application, duality of Hardy spaces with variable exponents is revisited. This work is different from earlier works about Orlicz-Hardy spaces HΦ(ℝn) in that the class of admissible functions ϕ is largely widened. We can deal with, for example,
$$\Phi (r) \equiv \left\{ \begin{gathered} r^{p1} \left( {\log \left( {e + {1 \mathord{\left/ {\vphantom {1 r}} \right. \kern-\nulldelimiterspace} r}} \right)} \right)^{q1} , 0 < r \leqslant 1, \hfill \\ r^{p2} \left( {\log \left( {e + r} \right)} \right)^{q2} , r > 1, \hfill \\ \end{gathered} \right.$$
with p1, p2 ∈ (0,∞) and q1, q2 ∈ (−∞,∞), where we shall establish the boundedness of the Riesz transforms on HΦ(ℝn). In particular, ϕ is neither convex nor concave when 0 < p1 < 1 < p2 < ∞, 0 < p2 < 1 < p1 < ∞ or p1 = p2 = 1 and q1, q2 > 0. If Φ(r) ≡ r(log(e+r))q, then HΦ(ℝn) = H(log H)q(ℝn). We shall also establish the boundedness of the fractional integral operators Iα of order α ∈ (0,∞). For example, Iα is shown to be bounded from H(log H)1 − α/n (ℝn) to Ln/(nα)(log L)(ℝn) for 0 < α < n.

Keywords

Hardy space Orlicz space atomic decomposition Campanato space bounded mean oscillation 

MSC(2010)

42B30 46E30 42B35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anh B T, J. Li, Orlicz-Hardy spaces associated to operators satisfying bounded H -functional calculus and Davies-Gaffney estimates. J Math Anal Appl, 2011, 373: 485–501CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Antonov N Y. Convergence of Fourier series. East J Approx, 1996, 2: 187–196MATHMathSciNetGoogle Scholar
  3. 3.
    Bergh J, Jörgen L. Interpolation Spaces: An Introduction. Grundlehren der Mathematischen Wissenschaften. Berlin-New York: Springer-Verlag, 1976CrossRefGoogle Scholar
  4. 4.
    Bui H Q. Some aspects of weighted and non-weighted Hardy spaces. Kokyuroku Res Inst Math Sci, 1980, 383: 38–56Google Scholar
  5. 5.
    Bui H Q. Weighted Besov and Triebel spaces: Interpolation by the real method. Hiroshima Math J, 1982, 12: 581–605MATHMathSciNetGoogle Scholar
  6. 6.
    Bui T A, Cao J, Ky L D, et al. Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off diagonal estimates. Anal Geom Metric Spaces, 2012, 1: 69–129MathSciNetGoogle Scholar
  7. 7.
    Cao J, Chang D C, Yang D, et al. Weighted local Orlicz-Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems. Trans Amer Math Soc, 2013, 365: 4729–4809CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cianchi A. Strong and weak type inequalities for some classical operators in Orlicz spaces. J London Math Soc (2), 1999, 60: 187–202CrossRefMathSciNetGoogle Scholar
  9. 9.
    Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Cruz-Uribe D V, Wang L A. Variable Hardy spaces. ArXiv:1211.6505, 2014Google Scholar
  11. 11.
    Curbera P, García-Cuerva J, Martell J, et al. Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv Math, 2006, 203: 256–318CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    DeVore R A, Sharpley R C. Maximal functions measuring smoothness. Mem Amer Math Soc, 1984, 47: viii+115MathSciNetGoogle Scholar
  13. 13.
    Duoandikoetxea J. Fourier Analysis. Providence, RI: Amer Math Soc, 2001MATHGoogle Scholar
  14. 14.
    Edmunds D E, Gurka P, Opic B. Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ Math J, 1995, 44: 19–43CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Fefferman C, Stein E. H p spaces of several variables. Acta Math, 1972, 129: 137–193CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Gallardo D. Orlicz spaces for which the Hardy-Littlewood maximal operator is bounded. Publ Mat, 1988, 32: 261–266CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    García-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. Amsterdam-New York-Oxford: North-Holland, 1985MATHGoogle Scholar
  18. 18.
    Goldberg D. A local version of real Hardy spaces. Duke Math J, 1979, 46: 27–42CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Grafakos L. Classical Fourier Analysis. New York: Springer, 2008MATHGoogle Scholar
  20. 20.
    Grafakos L, Tao T, Terwilleger E. L p bounds for a maximal dyadic sum operator. Math Z, 2004, 246: 321–337CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Grevholm B. On the structure of the spaces \(\mathcal{L}_k ^{p,\lambda }\). Math Scand, 1971, 26: 241–254MathSciNetGoogle Scholar
  22. 22.
    Hou S, Yang D, Yang S. Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun Contemp Math, 2013, doi: 10.1142/S0219199713500296Google Scholar
  23. 23.
    Hou S, Yang D, Yang S. Musielak-Orlicz BMO-type spaces associated with generalized approximations to the identity. ArXiv:1303.6366, 2013Google Scholar
  24. 24.
    Iwaniec T, Onninen J. H 1-estimates of Jacobians by subdeterminants. Math Ann, 2002, 324: 341–358CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Iwaniec T, Sbordone C. Weak minima of variational integrals. J Reine Angew Math, 1994, 454: 143–161MATHMathSciNetGoogle Scholar
  26. 26.
    Iwaniec T, Verde A. A study of Jacobians in Hardy-Orlicz spaces. Proc Roy Soc Edinburgh Sect A, 1999, 129: 539–570CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Kokilashvili V, Krbec M. Weighted Inequalities in Lorentz and Orlicz Spaces. River Edge, NJ: World Scientific Publishing, 1991CrossRefMATHGoogle Scholar
  28. 28.
    Jiang R, Yang D. New Orlicz-Hardy spaces associated with divergence form elliptic operators. J Funct Anal, 2010, 258: 1167–1224CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282: 219–231CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Krantz S G. Fractional integration on Hardy spaces. Studia Math, 1982, 73: 87–94MATHMathSciNetGoogle Scholar
  31. 31.
    Ky L D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Operator Theory, 2014, 78: 115–150CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Lerner A K. A simple proof of the A 2 conjecture. Int Math Res Not, 2013, 2013: 3159–3170MathSciNetGoogle Scholar
  33. 33.
    Liang Y, Huang J, Yang D. New real-variable characterizations of Musielak-Orlicz Hardy spaces. J Math Anal Appl, 2012, 395: 413–428CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Liang Y, Yang D. Musielak-Orlicz Campanato spaces and applications. J Math Anal Appl, 2013, 406: 307–322CrossRefMathSciNetGoogle Scholar
  35. 35.
    Liang Y, Yang D, Yuan W, et al. A new framework for generalized Besov-type and Triebel-Lizorkin-type spaces. Diss Math, 2013, 489: 114ppGoogle Scholar
  36. 36.
    Luxenberg W. Banach Function Spaces. Delft: Technische Hogeschool te Delft, 1955Google Scholar
  37. 37.
    Miyamoto T, Nakai E, Sadasue G. Martingale Orlicz-Hardy spaces. Math Nachr, 2012, 285: 670–686CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Mizuta Y, Nakai E, Sawano Y, et al. Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials. J Math Soc Japan, 2013, 65: 633–670CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Nakai E. On the restriction of functions of bounded mean oscillation to the lower-dimensional space. Arch Math, 1984, 43: 519–529CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Nakai E. Pointwise multipliers for functions of weighted bounded mean oscillation. Studia Math, 1993, 105: 106–119MathSciNetGoogle Scholar
  41. 41.
    Nakai E. Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math Nachr, 1994, 166: 95–103CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Nakai E. Generalized fractional integrals on Orlicz-Morrey spaces. In: Banach and Function Spaces. Yokohama: Yokohama Publishers, 2004, 323–333Google Scholar
  43. 43.
    Nakai E. Construction of an atomic decomposition for functions with compact support. J Math Anal Appl, 2006, 313: 730–737CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Nakai E. The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Studia Math, 2006, 176: 1–19CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Nakai E. A generalization of Hardy spaces H p by using atoms. Acta Math Sin Engl Ser, 2008, 24: 1243–1268CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Nakai E. Calderon-Zygmund operators on Orlicz-Morrey spaces and modular inequalities. In: Banach and Function Spaces II. Yokohama: Yokohama Publishers, 2008, 393–410Google Scholar
  47. 47.
    Nakai E. Singular and fractional integral operators on Campanato spaces with variable growth conditions. Rev Mat Complut, 2010, 23: 355–381CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Nakai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato spaces. J Funct Anal, 2012, 262: 3665–3748CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Nakano H. Modulared Semi-Ordered Linear Spaces. Tokyo: Maruzen, 1950MATHGoogle Scholar
  50. 50.
    Nakano H. Topology of Linear Topological Spaces. Tokyo: Maruzen, 1951Google Scholar
  51. 51.
    Samko N. Weighted Hardy and potential operators in Morrey spaces. J Funct Spaces Appl, 2012, 2012: 1–21CrossRefGoogle Scholar
  52. 52.
    O’Neil R. Fractional integration in Orlicz spaces: I. Trans Amer Math Soc, 1965, 115: 300–328MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Peetre J. On interpolation functions: II. Acta Sci Math, 1968, 29: 91–92MATHMathSciNetGoogle Scholar
  54. 54.
    Rauhut H, Ullrich T. Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type. J Funct Anal, 2011, 260: 3299–3362CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Rychkov V S. Littlewood-Paley theory and function spaces with A ploc weights. Math Nachr, 2001, 224: 145–180CrossRefMATHMathSciNetGoogle Scholar
  56. 56.
    Sawano Y. Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math J, 2005, 34: 435–458CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    Sawano Y. A note on Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces. Acta Math Sin Engl Ser, 2009, 25: 1223–1242CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    Serra C F. Molecular characterization of Hardy-Orlicz spaces. Rev Un Mat Argentina, 1996, 40: 203–217MATHMathSciNetGoogle Scholar
  59. 59.
    Stein E M. Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, NJ: Princeton University Press, 1993MATHGoogle Scholar
  60. 60.
    Stein E M, Weiss G. On the theory of harmonic functions of several variables, I: The theory of H p-spaces. Acta Math, 1960, 103: 25–62CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    Strichartz R S. A note on Trudinger’s extension of Sobolev’s inequalities. Indiana Univ Math J, 1972, 21: 841–842CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    Strömberg J O, Torchinsky A. Weighted Hardy Spaces. Berlin-New York: Springer-Verlag, 1989MATHGoogle Scholar
  63. 63.
    Taibleson M H. On the theory of Lipschitz spaces of distributions on Euclidean n-space, I: Principal properties. J Math Mech, 1964, 13: 407–479MathSciNetGoogle Scholar
  64. 64.
    Taibleson M H, Weiss G. The molecular characterization of certain Hardy spaces. Asterisque, 1980, 77: 67–149MATHMathSciNetGoogle Scholar
  65. 65.
    Torchinsky A. Interpolation of operations and Orlicz classes. Studia Math, 1976, 59: 177–207MATHMathSciNetGoogle Scholar
  66. 66.
    Triebel H. Theory of Function Spaces. Basel: Birkhäuser, 1983CrossRefGoogle Scholar
  67. 67.
    Trudinger N S. On imbeddings into Orlicz spaces and some applications. J Math Mech, 1967, 17: 473–483MATHMathSciNetGoogle Scholar
  68. 68.
    Ullrich T. Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits. J Funct Spaces Appl, 2012, 2012: 1–47CrossRefMathSciNetGoogle Scholar
  69. 69.
    Viviani B E. An atomic decomposition of the predual of BMO(ρ). Rev Mat Iberoamericana, 1987, 3: 401–425CrossRefMATHMathSciNetGoogle Scholar
  70. 70.
    Yang D, Yang S. Weighted local Orlicz Hardy spaces with applications to pseudo-differential operators. ArXiv:1107.3266, 2011Google Scholar
  71. 71.
    Yang D, Yang S. Orlicz-Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of ℝn. Indiana Univ Math J, 2012, 61: 81–129CrossRefMATHMathSciNetGoogle Scholar
  72. 72.
    Yang D, Yang S. Local Hardy spaces of Musielak-Orlicz type and their applications. Sci China Math, 2012, 55: 1677–1720CrossRefMATHMathSciNetGoogle Scholar
  73. 73.
    Yang D, Yang S. Real-variable characterizations of Orlicz-Hardy spaces on strongly Lipschitz domains of ℝn. RevMat Iberoam, 2013, 29: 237–292CrossRefMATHGoogle Scholar
  74. 74.
    Yang D, Yang S. Musielak-Orlicz Hardy spaces associated with operators and their applications. J Geom Anal, 2012, doi: 10.1007/s12220-012-9344-yGoogle Scholar
  75. 75.
    Yang D, Yuan W, Zhuo C. Musielak-Orlicz Besov-type and Triebel-Lizorkin-type spaces. Rev Mat Complut, 2014, 27: 93–157CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsIbaraki UniversityMito, IbarakiJapan
  2. 2.Department of Mathematics and Information SciencesTokyo Metropolitan UniversityHachioji-shi, TokyoJapan

Personalised recommendations