Advertisement

Science China Mathematics

, Volume 57, Issue 7, pp 1505–1516 | Cite as

The noncommutative KdV equation and its para-Kähler structure

  • Qing DingEmail author
  • ZhiZhou He
Articles

Abstract

We prove that the noncommutative (n × n)-matrix KdV equation is exactly a reduction of the geometric KdV flows from ℝ to the symmetric para-Grassmannian manifold \(\tilde G_{2n,n} \) = SL(2n, ℝ)/SL(n, ℝ) × SL(n, ℝ) and it can also be realized geometrically as a motion of Sym-Pohlmeyer curves in the symmetric Lie algebra sl(2n, ℝ) with initial data being suitably restricted. This gives a para-geometric characterization of the noncommutative matrix KdV equation.

Keywords

para-Kähler structure noncommutative KdV geometric realization 

MSC(2010)

37K25 37K10 53C44 58G30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablowitz M J, Clarkson P A. Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1992Google Scholar
  2. 2.
    Ablowitz M J, Ladik J F. Nonlinear differential-difference equations and Fourier analysis. J Math Phys, 1976, 17: 1011–1018CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Ablowitz M J, Prinari B, Trubatch A D. Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge: Cambridge University Press, 2004zbMATHGoogle Scholar
  4. 4.
    Alekseevsky D, Medori C, Tomassina A. Homogenous para-Kahler Einstein manifolds. Russian Math Surv, 2009, 64: 1–43CrossRefzbMATHGoogle Scholar
  5. 5.
    Athorne C, Fordy A P. Generalized KdV and mKdV equations associated with symmetric spaces. J Phys A, 1987, 20: 1377–1386CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bröcker T, tom Dieck T. Representations of Compact Lie Groups. New York-Berlin-Tokyo: Springer-Verlag, 1985CrossRefzbMATHGoogle Scholar
  7. 7.
    Chern S S, Peng C K. Lie groups and KdV equations. Manuscripta Math, 1979, 28: 207–217CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cruceanu V, Fortuny P, Gadea P M. A survey on paracomplex geometry. Rocky Mountain J Math, 1996, 26: 83–115CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Ding Q. A discretization of the matrix Schrödinger equation. J Phys A, 2000, 33: 6769–6778CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Ding Q, Wang W, Wang Y D. A motion of spacelike curves in the Minkowski 3-space and the KdV equation. Phys Lett A, 2010, 374: 3201–3205CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Ding Q, Wang Y D. Geometric KdV flows, motions of curves and the third order system of the AKNS hierarchy. Inter J Math, 2011, 22: 1013–1029CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Fokas A S, Ablowitz M J. On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane. J Math Phys, 1984, 25: 2494–2505CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Fordy A P, Kulish P. Nonlinear Schrödinger equations and simple Lie algebras. Comm Math Phys, 1983, 80: 427–443CrossRefMathSciNetGoogle Scholar
  14. 14.
    Goncharenko V M. On multisolton solutions of the matrix KdV equation. Theoret Math Phys, 2001, 126: 81–91CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Guil F, Manas M. String equations for the KdV hierarchy and the Grassmannian. J Phys A, 1993, 26: 3567–3582CrossRefMathSciNetGoogle Scholar
  16. 16.
    Helgason S. Differential geometry, Lie Group and Symmetric Spaces. New York-San Francisco-London: Academic Press, 1978Google Scholar
  17. 17.
    Langer J, Perline R. Geometric realizations of Fordy-Kulish nonlinear Schrödinger sysyems. Pacific J Math, 2000, 195: 157–178CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Comm Pure Appl Math, 1968, 21: 467–490CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Libermann P. Sur les structures Presque paracomplex. C R Acad Sci Paris, 1952, 234: 2517–2519zbMATHMathSciNetGoogle Scholar
  20. 20.
    Musso E, Nicolodi L. Hamiltonian flows and null curves. Nonlinearity, 2010, 23: 2117–2129CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Ohta Y. Special solutions of discrete integrable systems. In: Discrete Integrable Systems, vol. 644. Berlin: Springer, 2004, 57–83CrossRefGoogle Scholar
  22. 22.
    Olver P J, Sokolov V V. Integrable evolution equations on associative algebras. Comm Math Phys, 1998, 193: 245–268CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Petersen P. Riemannian Geometry, 2nd ed. New York: Springer, 2006zbMATHGoogle Scholar
  24. 24.
    Pinkall U. Hamiltonian flows on the space of star-sharped curves. Results Math, 1995, 27: 328–332CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Pohlmeyer K. Integrable Hamiltonian systems and interactions through quadratic constraints. Comm Math Phys, 1976, 46: 207–221CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Rashevskii P K. Scalar fields in a fibre space. Tr Semin Vekt Tenzor Analiz, 1948, 6: 225–248Google Scholar
  27. 27.
    Ricca R L. Rediscovery of Da Rios equation. Natural, 1991, 352: 561–562CrossRefGoogle Scholar
  28. 28.
    Sokolov V V, Wolf T. Classiffication of integrable polynomial vector evolution equations. J Phys A, 2001, 34: 11139–11148CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Strachan I A B. Some integrable hierarchies in (2 + 1)-dimensions and their twistor description. J Math Phys, 1993, 34: 243–259CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Sun X W, Wang Y D. KdV geometric flows on Kähler manifolds. Intern J Math, 2011, 22: 1439–1500CrossRefzbMATHGoogle Scholar
  31. 31.
    Sym A. Soliton surfaces and their applications. In: Geometric Aspects of the Einstein Equations and Integrable Systems. Lecture Notes in Physics, vol. 239. Berlin: Springer, 1985, 154–231CrossRefGoogle Scholar
  32. 32.
    Terng C L, Uhlenbeck K. Schrödinger flows on Grassmannians. In: Integrable Systems, Geometry, and Topology, edited by Chuu-Lian Terng, vol. 36. Providence, RI: Amer Math Soc, 2006, 235–256Google Scholar
  33. 33.
    Wadati M, Kamijo T. On the extension of inverse scattering method. Prog Theor Phys, 1974, 52: 397–414CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesFudan UniversityShanghaiChina

Personalised recommendations