Science China Mathematics

, Volume 57, Issue 3, pp 627–634

Robustness of orthogonal matching pursuit under restricted isometry property

Articles

Abstract

Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the OMP algorithm under the restricted isometry property (RIP) is presented. It is shown that \(\delta _K + \sqrt K \theta _{K,1} < 1\) is sufficient for the OMP algorithm to recover exactly the support of arbitrary K-sparse signal if its nonzero components are large enough for both l2 bounded and l bounded noises.

Keywords

compressed sensing orthogonal matching pursuit restricted isometry property 

MSC(2010)

65D15 65J22 68W40 15A29 74G15 90C25 49M30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cai T, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans Inf Theory, 2011, 57: 4680–4688CrossRefMathSciNetGoogle Scholar
  2. 2.
    Cai T, Wang L, Xu G. Stable recovery of sparse signal and an oracle inequality. IEEE Trans Inf Theory, 2010, 56: 3516–3522CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cai T, Xu G, Zhang J. On recovery of sparse signal via l 1 minimization. IEEE Trans Inf Theory, 2009, 55: 3388–3397CrossRefMathSciNetGoogle Scholar
  4. 4.
    Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52: 489–509CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Candes E J, Tao T. Decoding by linear programming. IEEE Trans Inf Theory, 2005, 51: 4203–4215CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory, 2009, 55: 2230–2249CrossRefMathSciNetGoogle Scholar
  7. 7.
    Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans Inf Theory, 2010, 56: 4395–4401CrossRefMathSciNetGoogle Scholar
  8. 8.
    Donoho D L. Compressed sensing. IEEE Trans Inf Theory, 2006, 52: 1289–1306CrossRefMathSciNetGoogle Scholar
  9. 9.
    Donoho D L, Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via l 1 minimization. Proc Nat Acad Sci USA, 2003, 100: 2197–2202CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Huang S, Zhu J. Recovery of sparse signals using OMP and its variants: Convergence analysis based on RIP. Inverse Problems, 2011, 27: 035003(14pp)Google Scholar
  11. 11.
    Li S, Wang H M. Signal recovery with partially known signal support (in Chinese). Sci Sin Math, 2012, 42: 313–319CrossRefGoogle Scholar
  12. 12.
    Liu E, Temlyakov V N. The orthogonal super greedy algorithm and applications in compressed sensing. IEEE Trans Inf Theory, 2012, 58: 2040–2047CrossRefMathSciNetGoogle Scholar
  13. 13.
    Liu Y, Wu Q S, Sun G C, et al. Parameter estimation of moving targets in the SAR system with a low PRF sampling rate (in Chinese). Sci Sin Inf, 2011, 41: 1517–1528Google Scholar
  14. 14.
    Maleh R. Improved RIP analysis of orthogonal matching pursuit. ArXiv: 1102.4311, 2011Google Scholar
  15. 15.
    Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harm Anal, 2009, 26: 301–321CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found Comput Math, 2007, 9: 317–344CrossRefMathSciNetGoogle Scholar
  17. 17.
    Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regualarized orthogonal matching pursuit. IEEE J Select Top Signal Process, 2010, 4: 310–316CrossRefGoogle Scholar
  18. 18.
    Saab R, Yilmaz O. Sparse recovery by non-convex optimization-instance optimality. Appl Comput Harm Anal, 2010, 29: 30–48CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Tropp J A. Greed is good: Algorithmic results for sparse approximation. IEEE Trans Inf Theory, 2004, 50: 2231–2242CrossRefMathSciNetGoogle Scholar
  20. 20.
    Wang J, Shim B. Improved recovery bounds of orthogonal matching pursuit using restricted isometry property. ArXiv: 1211.4293, 2012Google Scholar
  21. 21.
    Xu Z Q. Compressed sensing: A survey (in Chinese). Sci Sin Math, 2012, 42: 865–877CrossRefGoogle Scholar
  22. 22.
    Xu Z Q. The performance of orthogonal multi-matching pursuit under RIP. ArXiv: 1210.5323v2, 2012Google Scholar
  23. 23.
    Yin B C, Shi Y H, Ding W P, et al. Compressive sampling and sparse reconstruction of images/videos (in Chinese). Sci Sin Inf, 2013, 43: 226–242CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Mathematics and Computational SciencesGuangdong University of Business StudiesGuangzhouChina
  2. 2.School of Mathematical SciencesDalian University of TechnologyDalianChina

Personalised recommendations