Science China Mathematics

, Volume 55, Issue 10, pp 2109–2123 | Cite as

Estimates for wave and Klein-Gordon equations on modulation spaces

Articles

Abstract

We prove that the fundamental semi-group \(e^{it\left( {m^2 I + \left| \Delta \right|} \right)^{1/2} }\) (m ≠ 0) of the Klein-Gordon equation is bounded on the modulation space Mp,qs (ℝn) for all 0 < p, q and s ∈ ℝ. Similarly, we prove that the wave semi-group \(e^{it\left| \Delta \right|^{1/2} }\) is bounded on the Hardy type modulation spaces µp,qs (ℝn) for all 0 < p, q, and s ∈ ℝ. All the bounds have an asymptotic factor tn|1/p−1/2| as t goes to the infinity. These results extend some known results for the case of p ⩾ 1. Also, some applications for the Cauchy problems related to the semi-group \(e^{it\left( {m^2 I + \left| \Delta \right|} \right)^{1/2} }\) are obtained. Finally we discuss the optimum of the factor tn|1/p−1/2| and raise some unsolved problems.

Keywords

Klein-Gordon equation wave equation modulation space 

MSC(2010)

42B37 42B35 35L05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bényi A, Gröchenig K, Okoudjou K A, et al. Unimodular Fourier multipliers for modulation spaces. J Funct Anal, 2007, 246: 366–384MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Calderón A P, Torchinsky A. Parabolic functions associated with a distribution, II. Adv Math, 1977, 24: 101–171MATHCrossRefGoogle Scholar
  3. 3.
    Chen J, Fan D, Sun L. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discret Contin Dyn Syst, 2012, 32: 467–485MathSciNetMATHGoogle Scholar
  4. 4.
    Feichtinger H G. Modulation spaces on locally compact abelian groups. In: Krishna M, Radha R, Thangavelu S, eds. Technical Report, University of Vienna, 1983, Wavelets and Their Applications, 99–140. New Delhi: Allied Publishers, 2003Google Scholar
  5. 5.
    Feichtinger H G. Modulation spaces: looking back and ahead. Sampl Theory Signal Image Process, 2006, 5: 109–140MathSciNetMATHGoogle Scholar
  6. 6.
    Gröchening K. Foundations of Time-Frequency Analysis. Boston: Birkhäuser, 2001Google Scholar
  7. 7.
    Kobayashi M. Modulation spaces M p,q for 0 < p,q. Funct Spaces Appl, 2006, 4: 329–341MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kobayachi M. Dual of modulation spaces. Funct Spaces Appl, 2007, 5: 1–8MathSciNetCrossRefGoogle Scholar
  9. 9.
    Miyachi A. On some singular Fourier multipliers. J Fac Sci Univ Tokyo, 1981, 28: 267–315MathSciNetMATHGoogle Scholar
  10. 10.
    Miyachi A, Nicola F, Riveti S, et al. Estimates for unimodular Fourier multipliers on modulation spaces. Proc Amer Math Soc, 2009, 137: 3869–3883MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Sjöstrand J. An algebra of pseudo-differential operators. Math Res Lett, 1994, 1: 185–192MathSciNetMATHGoogle Scholar
  12. 12.
    Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, NJ: Princeton University Press, 1993MATHGoogle Scholar
  13. 13.
    Triebel H. Theory of Function Spaces. Basel: Birkhäuser-Verlag, 1983CrossRefGoogle Scholar
  14. 14.
    Toft J. Continuity properties for modulation spaces with applications to pseudo-differential calculus, II. Ann Global Anal Geom, 2004, 26: 73–106MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Wang B, Hao C, Huo C. Harmonic Analysis Method for Nonlinear Evolution Equations I. Hackensack, NJ: World Scientfic, 2011MATHCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang Normal UniversityJinhuaChina
  2. 2.Department of MathematicsUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations