Science China Mathematics

, Volume 54, Issue 11, pp 2453–2462

Characterization of Lie multiplicative isomorphisms between nest algebras



Let \(\mathcal{N}\) and \(\mathcal{M}\) be nests on Banach spaces X and Y over the real or complex field \(\mathbb{F}\), respectively, with the property that if \(M \in \mathcal{M}\) such that M = M, then M is complemented in Y. Let \(Alg\mathcal{N}\) and \(Alg\mathcal{M}\) be the associated nest algebras. Assume that \(\Phi :Alg\mathcal{N} \to Alg\mathcal{M}\) is a bijective map. It is proved that, if dimX = ∞ and if there is a nontrivial element in \(\mathcal{N}\) which is complemented in X, then Φ is Lie multiplicative (i.e. Φ([A,B]) = [Φ(A), Φ(B)] for all \(A,B \in Alg\mathcal{N}\)) if and only if Φ has the form Φ(A) = TAT−1 + τ(A) for all \(A \in Alg\mathcal{N}\) or Φ(A) = −TA*T−1 + τ(A) for all \(A \in Alg\mathcal{N}\), where T is an invertible linear or conjugate linear operator and \(\tau :Alg\mathcal{N} \to \mathbb{F}I\) is a map with τ([A,B]) = 0 for all \(A,B \in Alg\mathcal{N}\). The Lie multiplicative maps are also characterized for the case dimX < ∞.


Banach spaces nest algebras Lie ring isomorphisms Lie multiplicative maps 


47L35 16W10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bai Z F, Du S P, Hou J C. Multiplicative Lie isomorphisms between prime rings. Comm Algebra, 2008, 36: 1626–1633MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Beidar K I, Bresar M, Chebotar M A, et al. On Herstein’s Lie map conjectures (I). Trans Amer Math Soc, 2001, 353: 4235–4260MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Beidar K I, Bresar M, Chebotar M A, et al. On Herstein’s Lie map conjectures (III). J Algebra, 2002, 249: 59–94MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Beidar K I, Martindale III W S, Mikhalev A V. Lie isomorphisms in prime rings with involution. J Algebra, 1994, 169: 304–327MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Berenguer M I, Villena A R. Continuity of Lie isomorphisms of Banach algebras. Bull London Math Soc, 1999, 31: 6–10MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bresar M. Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings. Trans Amer Math Soc, 1993, 335: 525–546MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Davidson K R. Nest Algebras. Pitman Research Notes in Mathematics, vol. 191. London-New York: Longman, 1988Google Scholar
  8. 8.
    Hou J C, Zhang X L. Ring isomorphisms and linear or additive maps preserving zero products on nest algebras. Linear Algebra Appl, 2004, 387: 343–360MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Marcoux L W, Sourour A R. Lie isomorphisms of nest algebras. J Funct Anal, 1999, 164: 163–180MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Martindale III W S. Lie isomorphisms of prime rings. Trans Amer Math Soc, 1969, 142: 437–455MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Martindale III W S. Lie isomorphisms of simple rings. J London Math Soc, 1969, 44: 213–221MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Qi X F, Hou J C. Additivity of Lie multiplicative maps on triangular algebras. Linear Multilinear Algebra, in pressGoogle Scholar
  13. 13.
    Radjavi H, Rosenthal P. Invariant Subspaces. Berline-Heidelberg-New York: Springer-Verlag, 1973MATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of MathematicsShanxi UniversityTaiyuanChina
  2. 2.Department of MathematicsTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations