Science China Mathematics

, Volume 54, Issue 11, pp 2453–2462

Characterization of Lie multiplicative isomorphisms between nest algebras

Articles

Abstract

Let \(\mathcal{N}\) and \(\mathcal{M}\) be nests on Banach spaces X and Y over the real or complex field \(\mathbb{F}\), respectively, with the property that if \(M \in \mathcal{M}\) such that M = M, then M is complemented in Y. Let \(Alg\mathcal{N}\) and \(Alg\mathcal{M}\) be the associated nest algebras. Assume that \(\Phi :Alg\mathcal{N} \to Alg\mathcal{M}\) is a bijective map. It is proved that, if dimX = ∞ and if there is a nontrivial element in \(\mathcal{N}\) which is complemented in X, then Φ is Lie multiplicative (i.e. Φ([A,B]) = [Φ(A), Φ(B)] for all \(A,B \in Alg\mathcal{N}\)) if and only if Φ has the form Φ(A) = TAT−1 + τ(A) for all \(A \in Alg\mathcal{N}\) or Φ(A) = −TA*T−1 + τ(A) for all \(A \in Alg\mathcal{N}\), where T is an invertible linear or conjugate linear operator and \(\tau :Alg\mathcal{N} \to \mathbb{F}I\) is a map with τ([A,B]) = 0 for all \(A,B \in Alg\mathcal{N}\). The Lie multiplicative maps are also characterized for the case dimX < ∞.

Keywords

Banach spaces nest algebras Lie ring isomorphisms Lie multiplicative maps 

MSC(2000)

47L35 16W10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bai Z F, Du S P, Hou J C. Multiplicative Lie isomorphisms between prime rings. Comm Algebra, 2008, 36: 1626–1633MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Beidar K I, Bresar M, Chebotar M A, et al. On Herstein’s Lie map conjectures (I). Trans Amer Math Soc, 2001, 353: 4235–4260MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Beidar K I, Bresar M, Chebotar M A, et al. On Herstein’s Lie map conjectures (III). J Algebra, 2002, 249: 59–94MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Beidar K I, Martindale III W S, Mikhalev A V. Lie isomorphisms in prime rings with involution. J Algebra, 1994, 169: 304–327MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Berenguer M I, Villena A R. Continuity of Lie isomorphisms of Banach algebras. Bull London Math Soc, 1999, 31: 6–10MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bresar M. Commuting traces of biadditive mappings, commutativity preserving mappings, and Lie mappings. Trans Amer Math Soc, 1993, 335: 525–546MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Davidson K R. Nest Algebras. Pitman Research Notes in Mathematics, vol. 191. London-New York: Longman, 1988Google Scholar
  8. 8.
    Hou J C, Zhang X L. Ring isomorphisms and linear or additive maps preserving zero products on nest algebras. Linear Algebra Appl, 2004, 387: 343–360MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Marcoux L W, Sourour A R. Lie isomorphisms of nest algebras. J Funct Anal, 1999, 164: 163–180MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Martindale III W S. Lie isomorphisms of prime rings. Trans Amer Math Soc, 1969, 142: 437–455MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Martindale III W S. Lie isomorphisms of simple rings. J London Math Soc, 1969, 44: 213–221MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Qi X F, Hou J C. Additivity of Lie multiplicative maps on triangular algebras. Linear Multilinear Algebra, in pressGoogle Scholar
  13. 13.
    Radjavi H, Rosenthal P. Invariant Subspaces. Berline-Heidelberg-New York: Springer-Verlag, 1973MATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of MathematicsShanxi UniversityTaiyuanChina
  2. 2.Department of MathematicsTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations