Science China Mathematics

, Volume 54, Issue 7, pp 1499–1519

New mixed finite elements for plane elasticity and Stokes equations

Articles

Abstract

We consider mixed finite elements for the plane elasticity system and the Stokes equation. For the unmodified Hellinger-Reissner formulation of elasticity in which the stress and displacement fields are the primary unknowns, we derive two new nonconforming mixed finite elements of triangle type. Both elements use piecewise rigid motions to approximate the displacement and piecewise polynomial functions to approximate the stress, where no vertex degrees of freedom are involved. The two stress finite element spaces consist respectively of piecewise quadratic polynomials and piecewise cubic polynomials such that the divergence of each space restricted to a single simplex is contained in the corresponding displacement approximation space. We derive stability and optimal order approximation for the elements. We also give some numerical results to verify the theoretical results.

For the Stokes equation, introducing the symmetric part of the gradient tensor of the velocity as a stress variable, we present a stress-velocity-pressure field Stokes system. We use some plane elasticity mixed finite elements, including the two elements we proposed, to approximate the stress and velocity fields, and use continuous piecewise polynomial functions to approximate the pressure with the gradient of the pressure approximation being in the corresponding velocity finite element spaces. We derive stability and convergence for these methods.

Keywords

mixed finite element nonconforming elasticity Stokes equation 

MSC(2000)

65N15 65N30 65N50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amara M, Thomas J M. Equilibrium finite elements for the linear elastic problem. Numer Math, 1979 33: 367–383MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnold D N, Awanou G. Rectangular mixed finite elements for elasticity. Math Models Methods Appl Sci, 2005, 15: 1417–1429MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arnold D N, Brezzi F, Douglas J Jr. Peers: A new mixed finite element for plane elasticity. Jpn J Appl Math, 1984, 1: 347–367MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Arnold D N, Douglas J Jr, Gupta C P. A family of higher order mixed finite element methods for plane elasticity. Numer Math, 1984, 45: 1–22MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Arnold D N, Falk R S. A new mixed formulation for elasticity. Numer Math, 1988, 53: 13–30MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Arnold D N, Winther R. Mixed finite elements for elasticity. Numer Math, 2002, 92: 401–419MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Arnold D N, Winther R. Nonconforming mixed elements for elasticity. Math Models Methods Appl Sci, 2003, 13: 295–307MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Behr M A, Franca L P, Tezduyar T E. Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput Methods Appl Mech Engrg, 1993, 104: 31–48MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bochev P B, Gunzburger M D. Least-squares for the velocity-pressure-stress formulation of the stokes equations. Comput Methods Appl Mech Engrg, 1995, 126: 267–287MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bochev P B, Gunzburger M D. Finite element methods of least- squares type. SIAM Review, 1998, 40: 789–837MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bramble J H, Lazarov R D, Pasciak J. Least-squares methods for linear elasticity based on a discrete minus one inner product. Comput Methods Appl Mech Engng, 2001, 191: 727–744MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Brezzi F. On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Numer Anal, 1974, 8: 129–151MathSciNetGoogle Scholar
  13. 13.
    Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Berlin: Springer-Verlag, 1991MATHGoogle Scholar
  14. 14.
    Cai Z, Lee B, Wang P. Least-squares methods for incompressible newtonian fluid flow: Linear stationary problems. SIAM J Numer Anal, 2004, 42: 843–859MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Cai Z, Manteuffel T A, McCormick S F. First-order system least squares for second-order partial differential equations: Part II. SIAM J Numer Anal, 1997, 34: 425–454MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Chang C L. A mixed finite element method for the stokes problem: an accelerations-pressure formulation. Appl Math Comput, 1990, 36: 135–146MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Farhloul M, Fortin M. Dual hybrid methods for the elasticity and the stokes problems: a unified approach. Numer Math, 1997, 76: 419–440MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Farhloul M, Zine A M. A new mixed finite element method for the stokes problem. J Math Anal Appl, 2002, 276: 329–342MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Fraejis de Veubeke B M. Displacement and equilibrium models in the finite element method. In: Zienkiewicz O C, Holister G, eds. Stress Analysis. New York: Wiley, 1965, 145–197Google Scholar
  20. 20.
    Franca L P, Stenberg R. Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J Numer Anal, 1991, 28: 1680–1697MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Berlin-New York: Springer-Verlag, 1986MATHGoogle Scholar
  22. 22.
    Gunzburger M D. Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms. London: Academic Press, 1989MATHGoogle Scholar
  23. 23.
    Hu J, Shi Z C. Lower order rectangular nonconforming mixed finite elements for plane elasticity. SIAM J Numer Anal, 2007, 46: 88–102CrossRefMathSciNetGoogle Scholar
  24. 24.
    Jiang B. The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electro-Magnetics. Berlin: Springer, 1998Google Scholar
  25. 25.
    Johnson C. A mixed finite element method for the Navier-Stokes equations. RAIRO M2AN, 1978, 12: 335–348MATHGoogle Scholar
  26. 26.
    Johnson C, Mercier B. Some equilibrium finite element methods for two-dimensional elasticity problems. Numer Math, 1978, 30: 103–116MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Mignot A L, Surry C. A mixed finite element family in plane elasticity. Appl Math Model, 1981, 5: 259–262MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Stein E, Rolfes R. Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity. Comput Methods Appl Mech Engrg, 1990, 84: 77–95MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Stenberg R. On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer Math, 1986, 48: 447–462MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Stenberg R. A family of mixed finite elements for the elasticity problem. Numer Math, 1988, 53: 513–538MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Stenberg R. Two low-order mixed methods for the elasticity problem. In: The Mathematics of Finite Elements and Applications, vol. VI. London: Academic Press, 1988, 271–280Google Scholar
  32. 32.
    Watwood Jr V B, Hartz B J. An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems. Internat J Solids Structures, 1968, 4: 857–873MATHCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of MathematicsSichuan UniversityChengduChina
  2. 2.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations