Science China Mathematics

, Volume 53, Issue 12, pp 3099–3114 | Cite as

Quasi-neutral limit of the full bipolar Euler-Poisson system

  • Song Jiang
  • QiangChang Ju
  • HaiLiang Li
  • Yong LiEmail author


The quasi-neutral limit of the multi-dimensional non-isentropic bipolar Euler-Poisson system is considered in the present paper. It is shown that for well-prepared initial data the smooth solution of the nonisentropic bipolar Euler-Poisson system converges strongly to the compressible non-isentropic Euler equations as the Debye length goes to zero.


quasi-neutral limit two-fluid Euler-Poisson compressible non-isentropic Euler equation 


35C20 35Q35 35B40 35L60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen F F. Introduction to Plasma Physics. New York: Plenum, 1974Google Scholar
  2. 2.
    Alí G, Chen L, Jüngel A, et al. The zero-electron-mass limit in the hydrodynamic model for plasmas. Nonlinear Anal, 2010, 72: 4415–4427MathSciNetGoogle Scholar
  3. 3.
    Cordier S, Grenier E. Quasineutral limit of an Euler-Poisson system arising from plasma physics. Commun Partial Differential Equations, 2000, 23: 1099–1113CrossRefMathSciNetGoogle Scholar
  4. 4.
    Crispel P, Degond P, Vignal M. An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit. J Comput Phys, 2007, 223: 208–234zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Crispel P, Degond P, Vignal M. A plasma expansion model based on the full Euler-Poisson system. Math Models Methods Appl Sci, 2007, 17: 1129–1158zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gasser I, Marcati P. A quasi-neutral limit in a hydrodynamic model for charged fluids. Monatsh Math, 2003, 138: 189–208zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ju Q C, Li H L, Li Y, et al. Quasi-neutral limit of the two-fluid Euler-Poisson system. Commun Pure Appl Anal, 2010, 9: 1577–1590Google Scholar
  8. 8.
    Krall N A, Trivelpiece A W. Principles of Plasma Physics. San Francisco: San Francisco Press, 1986Google Scholar
  9. 9.
    Li H L, Lin C K, Masmoudi N. Asymptotic of the compressible non-isentropic Euler-Poisson system for small debye length. Matimyàs Mat, 2003, 26: 71–79zbMATHMathSciNetGoogle Scholar
  10. 10.
    Majda A. Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematics Science, 53. New York-Berlin: Springer-Verlag, 1984zbMATHGoogle Scholar
  11. 11.
    Peng Y J. Some asymptotic analysis in steady-state Euler-Poisson equations for potential flow. Asymptotic Anal, 2003, 158: 75–92Google Scholar
  12. 12.
    Peng Y J, Wang Y G. Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows. Nonlinearity, 2004, 17: 835–849zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Peng Y J, Wang Y G. Convergence of compressible Euler-Poisson equations to incompressible type Euler equations. Asymptotic Anal, 2005, 41: 141–160zbMATHMathSciNetGoogle Scholar
  14. 14.
    Peng Y J, Wang Y G, Yong W A. Quasi-neutral limit of the non-isentropic Euler-Poisson system. Proc Roy Soc Edinburgh Sect A, 2006, 136: 1013–1026zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Slemrod M, Sternberg N. Quasi-neutral limit for Euler-Poisson system. J Nonlinear Sci, 2001, 11: 193–209zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wang S. Quasineutral limit of Euler-Poisson system with and without viscosity. Commun Partial Differential Equations, 2004, 29: 419–456zbMATHCrossRefGoogle Scholar
  17. 17.
    Yong W A. Singular perturbation of first-order hyperbolic systems with stiff source terms. J Differential Equations, 1999, 155: 89–132zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Yong W A. Basic aspects of hyperbolic relaxation system. In: Freistühler H, Szepessy A, eds. Advances in the Theory of Shock Waves. Progress in Nonlinear Differential Equations and Their Applications. Boston: Birkhäuser, 2002, 259–305Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Song Jiang
    • 1
  • QiangChang Ju
    • 1
  • HaiLiang Li
    • 2
  • Yong Li
    • 3
    Email author
  1. 1.Laboratory Computational PhysicsInstitute of Applied Physics and Computational MathematicsBeijingChina
  2. 2.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  3. 3.College of Applied ScienceBeijing University of TechnologyBeijingChina

Personalised recommendations