Advertisement

Science China Mathematics

, Volume 53, Issue 10, pp 2733–2748 | Cite as

Asymptotic profile of solutions to the two-dimensional dissipative quasi-geostrophic equation

  • BoQing DongEmail author
  • QingQing Liu
Articles

Abstract

This paper is concerned with the asymptotic behavior of the two-dimensional dissipative quasi-geostrophic equation. Based on the spectral decomposition of the Laplacian operator and iterative techniques, we obtain improved L 2 decay rates of weak solutions and derive more explicit upper bounds of higher order derivatives of solutions. We also prove the asymptotic stability of the subcritical quasi-geostrophic equation under large initial and external perturbations.

Keywords

quasi-geostrophic equation L2 decay asymptotic stability 

MSC(2000)

35Q35 76B03 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun Pure Appl Math, 1982, 35: 771–831zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Caffarelli L, Vasseur A. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann of Math, in pressGoogle Scholar
  3. 3.
    Carrillo J, Lucas L. The asymptotic behaviour of subcritical dissipative quasi-geostrophic equations. Nonlinearity, 2008, 21: 1001–1018zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chae D. On the regularity conditions for the dissipative quasi-geostrophic equations. SIAM J Math Anal, 2006, 37: 1649–1656zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chae D, Lee J. Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Commun Math Phys, 2003, 233: 297–311zbMATHMathSciNetGoogle Scholar
  6. 6.
    Chen Q, Miao C, Zhang Z. A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation. Commun Math Phys, 2007, 271: 821–838zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen Z, Ghil M, Siminnet E, et al. Hopf bifurcation in quasi-geostrophic flow. SIAM J Appl Math, 2003, 64: 343–368zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen Z, Price W. Stability and instability analyses of the dissipative quasi-geostrophic equation. Nonlinearity, 2008, 21: 765–782zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Constantin P, Majda A, Tabak E. Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity, 1994, 7: 1495–1533zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Constantin P, Wu J. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J Math Anal, 1999, 30: 937–948zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Córdoba D. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann of Math, 1998, 148: 1135–1152zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Córdoba A, Córdoba D. A maximum principle applied to quasi-geostrophic equations. Commun Math Phys, 2004, 249: 511–528zbMATHCrossRefGoogle Scholar
  13. 13.
    Dong B, Chen Z. Asymptotic stability of non-Newtonian flows with large perturbation. Appl Math Comput, 2006, 173: 243–250zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dong B, Chen Z. Remarks on upper and lower bounds of solutions to the Navier-Stokes equations in ℝ2. Appl Math Comput, 2006, 182: 553–558zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dong B, Chen Z. Asymptotic stability of the critical and super-critical dissipative quasi-geostrophic equation. Nonlinearity, 2006, 19: 2919–2928zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Dong B, Chen Z. A remark on regularity criterion for the dissipative quasi geostrophic equations. J Math Anal Appl, 2007, 329: 1212–1217zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dong B, Jiang W. On the decay of higher order derivatives of solutions to Ladyzhenskaya model for incompressible viscous flows. Sci China Ser A, 2008, 51: 925–934zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ju N. Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equation in the Sobolev space. Commun Math Phys, 2004, 251: 365–376zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Ju N. The maximum principle and the global attractor for the 2D dissipative quasi-geostrophic equation. Commun Math Phys, 2005, 255: 161–182zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kajikiya R, Miyakawa T. On L 2 decay of weak solutions of the Navier-Stokes Equations in ℝn. Math Z, 1986, 192: 135–148zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kiselev A, Nazarov F, Volberg A. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent Math, 2007, 167: 445–453zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kozono H. Asymptotic stability of large solutions with large perturbation to the Navier-Stokes equations. J Funct Anal, 2000, 176: 153–197zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Majda A, Tabak E. A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow. Phys D, 1996, 98: 515–522zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Niche C, Schonbek M. Decay of weak solutions to the 2D dissipative quasi-geostrophic equation. Commun Math Phys, 2007, 276: 93–115zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Oliver M, Titi E S. Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in ℝn. J Funct Anal, 2000, 172: 1–18zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Pedlosky J. Geophysical Fluid Dynamics. New York: Springer, 1987zbMATHGoogle Scholar
  27. 27.
    Resnick S. Dynamical problems in non-linear advective partial differential equarions. PhD Thesis. Chicago: University of Chicago, 1995Google Scholar
  28. 28.
    Schonbek M, Schonbek T. Asymptotic behavior to dissipative quasi-geostrophic flows. SIAM J Math Anal, 2003, 35: 357–375zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Schonbek M, Schonbek T. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete Contin Dyn Syst, 2005, 13: 1277–1304zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Wu J. The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation. Nonlinearity, 2005, 18: 139–154zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Zhou Y. On the energy and helicity conservations for the 2D quasi-geostrophic equation. Ann Henri Poincaré, 2005, 6: 791–799zbMATHCrossRefGoogle Scholar
  32. 32.
    Zhou Y. Asymptotic stability for the 3D Navier-Stokes equations. Comm Partial Differential Equations, 2005, 30: 323–333zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Zhou Y. Decay rate of higher order derivatives for solutions to the 2D dissipative quasi-geostrophic flows. Discrete Contin Dyn Syst, 2006, 14: 525–532zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Zhou Y. A remark on the decay of solutions to the 3-D Navier-Stokes equations. Math Methods Appl Sci, 2007, 30: 1223–1229zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Zhou Y. Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows. Nonlinearity, 2008, 21: 2061–2071zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Mathematical SciencesAnhui UniversityHefeiChina

Personalised recommendations