Science China Mathematics

, Volume 53, Issue 3, pp 555–563 | Cite as

Twisted analytic torsion

  • Varghese Mathai
  • SiYe Wu
Open Access


We review the Reidemeister, Ray-Singer’s analytic torsion and the Cheeger-Müller theorem. We describe the analytic torsion of the de Rham complex twisted by a flux form introduced by the current authors and recall its properties. We define a new twisted analytic torsion for the complex of invariant differential forms on the total space of a principal circle bundle twisted by an invariant flux form. We show that when the dimension is even, such a torsion is invariant under certain deformation of the metric and the flux form. Under T-duality which exchanges the topology of the bundle and the flux form and the radius of the circular fiber with its inverse, the twisted torsion of invariant forms are inverse to each other for any dimension.


analytic torsion circle bundles T-duality 


Primary 58J52 Secondary 57Q10, 58J40, 81T30 


  1. 1.
    Atiyah M F, Segal G. Twisted K-theory and cohomology. In: P.A. Griffith ed., Inspired by S.S. Chern, Nankai Tracts Math., vol. 11. Hackensack: World Sci Publ, 2006, 5–43; ArXiv:math.AT/0510674Google Scholar
  2. 2.
    Bismut J-M, Zhang W. Métriques de Reidemeister et métriques de Ray-Singer sur le déterminant de la cohomologie d’un fibré plat: une extension d’un résultat de Cheeger et Müller. C R Acad Sci Paris Sér. I Math, 1991, 313: 775–782; An extension of a theorem by Cheeger and Müller, with an appendix by F. Laudenbach, Astérisque, 1992, 205: 1–235zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bouwknegt P, Carey A, Mathai V, et al. Twisted K-theory and K-theory of bundle gerbes. Commun Math Phys, 2002, 228: 17–49; ArXiv:hep-th/0106194zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bouwknegt P, Evslin J, Mathai V. T-duality: topology change from H-flux. Commun Math Phys, 2004, 249: 383–415; ArXiv:hep-th/0306062zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brüning J, Heintze E. The asymptotic expansion of Minakshisundaram-Pleijel in the equivariant case. Duke Math J, 1984, 51: 959–980zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cheeger J. Analytic torsion and reidemeister torsion. Proc Nat Acad Sci, 1977, 74: 2651–2654; Analytic torsion and the heat equation. Ann of Math, 1979, 109: 259–322zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    de Rham G. Sur les nouveaux invariants de M. Reidemeister. Mat Sb, 1936, 1: 737–743zbMATHGoogle Scholar
  8. 8.
    de Rham G. Torsion et type simple d’homotopy. In: Séminaire Math. Université de Lausanne, 1964Google Scholar
  9. 9.
    Franz W. Über die Torsion einer Überdeckung. J Reine Angew Math, 1935, 173: 245–254zbMATHGoogle Scholar
  10. 10.
    Gualtieri M. Generalized complex geometry. Oxford University, PhD Thesis, 2003; ArXiv:math/0401221Google Scholar
  11. 11.
    Gualtieri M. Generalized geometry and the Hodge decomposition. Preprint, 2004; ArXiv:math/0409093Google Scholar
  12. 12.
    Guillemin V. A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues. Adv Math, 1985, 55:131–160zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hitchin N. Generalized Calabi-Yau manifolds. Quart J Math, 2003, 54: 281–308; ArXiv:math/0209099zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Köhler K. Equivariant Reidemeister torsion on symmetric spaces. Math Ann, 1997, 307: 57–69zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kontsevich M, Vishik S. Determinants of elliptic pseudo-differential operators. Preprint, 1994; ArXiv:hep-th/9404046; Geometry of determinants of elliptic operators. In: S. Gindikin, J. Lepowsky and R.L. Wilson eds. Prog Math, vol. 131. Boston: Birkhäuser, 1995, 173–197; ArXiv:hep-th/9406140Google Scholar
  16. 16.
    Li Y. On deformations of generalized complex structures: the generalized Calabi-Yau case. Preprint 2005; ArXiv:hepth/0508030Google Scholar
  17. 17.
    Mathai V, Wu S. Analytic torsion for twisted de Rham complexes. Preprint, 2008; ArXiv:0810.4204v3Google Scholar
  18. 18.
    Mathai V, Wu S. Analytic torsion of ℤ2-graded elliptic complexes. Preprint, 2010; ArXiv:1001.3212Google Scholar
  19. 19.
    Milnor J. Whitehead torsion. Bull Amer Math Soc, 1966, 72: 358–426zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Müller W. Analytic torsion and R-torsion of Riemannian manifolds. Adv Math, 1978, 28: 233–305zbMATHCrossRefGoogle Scholar
  21. 21.
    Müller W. Analytic torsion and R-torsion for unimodular representations. J Amer Math Soc, 1993, 6: 721–753zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ray D B. Reidemeister torsion and the Laplacian on lens spaces. Adv Math, 1970, 4: 109–126zbMATHCrossRefGoogle Scholar
  23. 23.
    Ray D B, Singer I M. R-torsion and the Laplacian on Riemannian manifolds. Adv Math, 1971, 7: 145–210zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Ray D B, Singer I M. Analytic torsion. In: D.C. Spencer ed. Partial Differential Equations, Proc Sympos Pure Math, vol. XXIII. Providence, RI: Amer Math Soc, 1973, 167–181Google Scholar
  25. 25.
    Ray D B. Singer I M. Analytic torsion for complex manifolds. Ann of Math, 1973, 98: 154–177CrossRefMathSciNetGoogle Scholar
  26. 26.
    Reidemeister K. Homotopieringe und Linsenräume. Hamburger Abhandl, 1935, 11: 102–109zbMATHCrossRefGoogle Scholar
  27. 27.
    Rohm R, Witten E. The antisymmetric tensor field in superstring theory. Ann Phys, 1986, 170: 454–489CrossRefMathSciNetGoogle Scholar
  28. 28.
    Seeley R T. Complex powers of an elliptic operator. In: A.P. Calderón ed. Proc Symp Pure Math, vol. X. Providence, RI: Amer Math Soc, 1967, 288–307Google Scholar
  29. 29.
    Witten E. Supersymmetry and Morse theory. J Diff Geom, 1982, 17: 661–692zbMATHMathSciNetGoogle Scholar
  30. 30.
    Wodzicki M. Local invariants of spectral asymmetry. Invent Math, 1984, 75: 143–177zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AdelaideAdelaideAustralia
  2. 2.Department of MathematicsUniversity of ColoradoBoulderUSA
  3. 3.Department of MathematicsUniversity of Hong KongHong KongChina

Personalised recommendations