Science China Mathematics

, Volume 53, Issue 3, pp 641–656 | Cite as

Recurrence properties of sequences of integers

Articles
  • 63 Downloads

Abstract

In order to study the recurrence of sequences of integers, we investigate their L 2-exactness and Θ-Hartman property (Θ being a set of rational numbers). Two classes of sequences of integers are well studied, which are return times relative to a weakly mixing system and Bernoulli random sequences.

Keywords

recurrent set random sequence Wiener-Wintner theorem 

MSC(2000)

28D 37A45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertrand-Mathis A. Ensembles intersectifs et récurrence de Poincaré. Isreal J Math, 1986, 55: 184–198MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boshernitzan M. Homogeneously distributed sequences and Poincare sequences of integers of sublacunary growth. Monatsch Math, 1983, 96: 173–181MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bourgain J. On the maximal ergodic theorem for certain subsets of the intergers. Israel J Math, 1988, 61: 39–72MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bourgain J. Pointwise ergodic theorems for arithmetic sets. With an appendix by the author, Furstenberg H, Katznelson Y and Ornstein D. Inst Hautes Etudes Sci Publ Math, 1989, 69: 5–45MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fan A H, Schneider D. Une inégalité de Littlewood-Salem. Ann Inst H Poincar Probab Statist, 2003, 39: 193–216MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Frantzikinakis N, Host B, Kra B. Multiple recurrence and convergence for sequences related to the prime number. J Reine Angew Math, 2007, 611: 131–144MATHMathSciNetGoogle Scholar
  7. 7.
    Frantzikinakis N, Lesigne E, Wierdl M. Sets of k-recurrence but not (k + 1)-recurrence. Ann Inst Fourier, 2006, 56: 839–849MATHMathSciNetGoogle Scholar
  8. 8.
    Furstenberg H. Recurrence in Ergodic Theorey and Combinatorial Number Theory. Princeton: Princeton University Press, 1981Google Scholar
  9. 9.
    Hartman S. Remarks on equidistribution on non-compact groups. Composition, 1964, 16: 66–71MATHMathSciNetGoogle Scholar
  10. 10.
    Kahane J P. Some Series of Random Functions. Cambridge: Cambridge University Press, 1985MATHGoogle Scholar
  11. 11.
    Kahane J P, Katznelson Y. Entiers aléatoires, ensembles de Sidon, densité dans le groupe de Bohr et ensembles d’analyticité. C R Math Acad Sci Paris, 2007, 345: 21–24MATHMathSciNetGoogle Scholar
  12. 12.
    Kahane J P, Katznelson Y. Entiers aléatoires et analyse harmonique. J Anal Math, 2008, 105: 363–378MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kahane J P, Katznelson Y. Distribution uniforme de certaines suites d’entiers aléatoires dans le groupe de Bohr. J Anal Math, 2008, 105: 379–382MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kamae K, Mendès France M. van der Corput’s difference theorem. Israel J Math, 1978, 31: 335–342MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Krengel U. Ergodic Theorems. Berlin-New York: Walter de Gruyter, 1985MATHGoogle Scholar
  16. 16.
    Kuipers L, Niederreiter H. Uniform distribution of sequences. In: Pure and Applied Mathematics. New York-London-Sydney: Wiley-Interscience, 1974Google Scholar
  17. 17.
    Li D, Queffélec H, Rodríguez-Piazza L. Some new thin sets of integers in harmonic analysis. J Anal Math, 2002, 86: 105–138MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Li D, Queffélec H, Rodríguez-Piazza L. On some random thin sets of integers. Proc Amer Math Soc, 2008, 136: 141–150MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Nair R, Zaris P. On certain sets of integers and intersectivity. Math Proc Camb Philos Soc, 2001, 131: 157–164MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Weber M. Dynamical Systems and Processes. In: IRMA Lectures in Mathematics and Theoretical Physics, vol. 14. Berlin: European Mathematical Society, 2009Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.CNRS, LAMFA, UMR 6140University of PicardieAmiensFrance
  2. 2.CNRS, LMPA J. Liouville, FR 2956University Lille Nord de FranceCalaisFrance

Personalised recommendations