Science China Mathematics

, Volume 53, Issue 4, pp 953–965

Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space

Articles

Abstract

The conformal geometry of regular hypersurfaces in the conformal space is studied. We classify all the conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in the conformal space up to conformal equivalence.

Keywords

Lorentz conformal geometry conformal invariants conformal isoparametric hypersurfaces 

MSC(2000)

53A30 53C42 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hu Z J, Li H Z. Classification of hypersurfaces with parallel Möbius second fundamental form in Sn+1. SciChina Ser A, 2004, 47: 417–430MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Li H Z, Liu H L, Wang C P, et al. Möbius isoparametric hypersurfaces in Sn+1 with two distinct principal curvatures. Acta Math Sinica Engl Ser, 2002, 18: 437–446MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Li Z Q, Xie Z H. Space-like isoparametric hypersurfaces in Lorentzian space forms. Front Math China, 2006, 1: 130–137CrossRefMathSciNetGoogle Scholar
  4. 4.
    Magid M A. Lorentzian isoparametric hypersurface. Pacific J Math, 1985, 118: 437–446MathSciNetGoogle Scholar
  5. 5.
    Nie C X. Conformal geometry of hypersurfaces and surfaces in Lorentzian space forms (in Chinese). Dissertation for the Doctoral Degree. Beijing: Peking University, 2006, 17–27, 41–52Google Scholar
  6. 6.
    Nie C X, Ma X, Wang C P. Conformal CMC-surfaces in Lorentzian space forms. Chin Ann Math Ser B, 2007, 28: 299–310MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Nie C X, Wu C X. Regular submanifolds in conformal spaces (in Chinese). Chin Ann Math Ser A, 2008, 29: 315–324MATHMathSciNetGoogle Scholar
  8. 8.
    Nie C X, Wu C X. Space-like hyperspaces with parallel conformal second fundamental forms in the conformal space (in Chinese). Acta Math Sinica Chin Ser, 2008, 51: 685–692MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Nomizu K. On isoparametric hypersurfaces in the Lorentzian space forms. Japan J Math, 1981, 7: 217–216MATHMathSciNetGoogle Scholar
  10. 10.
    Xiao L. Lorentzian isoparametric hypersurfaces in H 1n+1. Pacific J Math, 1999, 189: 377–397CrossRefMathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • ChangXiong Nie
    • 1
    • 2
  • TongZhu Li
    • 3
  • YiJun He
    • 4
  • ChuanXi Wu
    • 5
  1. 1.Faculty of Mathematics and Computer SciencesHubei UniversityWuhanChina
  2. 2.School of Mathematical SciencesPeking UniversityBeijingChina
  3. 3.Faculty of SciencesBeijing Institute of TechnologyBeijingChina
  4. 4.School of Mathematical SciencesShanxi UniversityTaiyuanChina
  5. 5.Institute of MathematicsHubei UniversityWuhanChina

Personalised recommendations