Advertisement

Science in China Series A: Mathematics

, Volume 52, Issue 11, pp 2493–2505 | Cite as

Commutators of Littlewood-Paley operators

  • YanPing Chen
  • Yong DingEmail author
Article

Abstract

Let bL loc(ℝ n ) and L denote the Littlewood-Paley operators including the Littlewood-Paley g function, Lusin area integral and g λ * function. In this paper, the authors prove that the L p boundedness of commutators [b, L] implies that b ∈ BMO(ℝ n ). The authors therefore get a characterization of the L p -boundedness of the commutators [b, L]. Notice that the condition of kernel function of L is weaker than the Lipshitz condition and the Littlewood-Paley operators L is only sublinear, so the results obtained in the present paper are essential improvement and extension of Uchiyama’s famous result.

Keywords

Littlewood-Paley g function area integral gλ* function commutators BMO 

MSC(2000)

42B20 42B99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coifman R, Rocherberg R, Weiss G. Factorization theorems for Hardy spaces in several valuables. Ann of Math, 103: 611–636 (1976)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Uchiyama A. On the compactness of operators of Hankel type. Tôhoku Math, 30: 163–171 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Torchinsky A, Wang S. A note on the Marcinkiewicz integral. Colloq Math, 60–61: 235–243 (1990)MathSciNetGoogle Scholar
  4. 4.
    Stein E. On the function of Littlewood-Paley, Lusin and Marcinkiewicz. Trans Amer Math Soc, 88: 430–466 (1958)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Benedek A, Calderón A, Panzones R. Convolution operators on Banach space valued functions. Proc Nat Acad Sci USA, 48: 356–365 (1962)zbMATHCrossRefGoogle Scholar
  6. 6.
    Hörmander L. Estimates for translation invariant operators in L p spaces. Acta Math, 104: 93–140 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ding Y, Fan D, Pan Y. Weighted boundedness for a class of rough Marcinkiewicz integrals. Indiana Univ Math J, 48: 1037–1055 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ding Y, Fan D, Pan Y. L p-boundedness of Marcinkiewicz integrals with Hardy space function kernel. Acta Math Sin (Engl Ser), 16: 593–600 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    AL-Salman A, AL-Qassem H, Cheng L, et al. L p bounds for the function of Marcinkiewicz. Math Res Lett, 9: 697–700 (2002)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Ding Y, Lu S, Yabuta K. On commutators of Marcinkiewicz integrals with rough kernel. J Math Anal Appl, 275: 60–68 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Stein E. The development of square functions in the work of A. Zygmund. Bull Amer Math Soc (NS), 7: 359–376 (1982)zbMATHCrossRefGoogle Scholar
  12. 12.
    Kenig C. Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. CBMS, Vol. 83. Providence: Amer Math Soc, 1994Google Scholar
  13. 13.
    Chang S, Wilson J, Wolff T. Some weighted norm inequalities concerning the Schödinger operators. Comment Math Helv, 60: 217–246 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sakamoto M, Yabuta K. Boundedness of Marcinkiewicz functions. Studia Math, 135: 103–142 (1999)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Ding Y, Xue Q. Endpoint estimates for commutators of a class of Littlewood-Paley operators. Hokkaido Math J, 36: 245–282 (2007)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Stein E. Singular Integrals and Differentiability Properties of Functions. Princeton, NJ: Princeton University Press, 1970zbMATHGoogle Scholar
  17. 17.
    Ding Y. A note on end properties of Marcinkiewicz integral. J Korean Math Soc, 42: 1087–1100 (2005)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Mathematics and Mechanics, Applied Science SchoolUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Mathematical SciencesBeijing Normal UniversityBeijingChina
  3. 3.Laboratory of Mathematics and Complex Systems (BNU), Ministry of EducationBeijingChina

Personalised recommendations