Science in China Series A: Mathematics

, Volume 53, Issue 1, pp 41–50

Periodic solutions of a 2nth-order nonlinear difference equation

Articles

Abstract

In this paper, a 2nth-order nonlinear difference equation is considered. Using the critical point theory, we establish various sets of sufficient conditions of the nonexistence and existence of periodic solutions. Results obtained complement or improve the existing ones.

Keywords

periodic solution nonlinear difference equation critical point theory 

MSC(2000)

39A11 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal R P. Difference Equations and Inequalities: Theory, Methods and Applications. New York: Marcel Dekker, 1992MATHGoogle Scholar
  2. 2.
    Ahlbrandt C D, Peterson A C. Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations. Dordrecht: Kluwer Academic Publishers, 1996MATHGoogle Scholar
  3. 3.
    Atici F M, Guseinov G S. Positive periodic solutions for nonlinear difference equations with periodic coefficients. J Math Anal Appl, 1999, 232: 166–182MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Benci V, Rabinowitz P H. Critical point theorems for indefinite functionals. Invent Math, 1979, 52: 241–273MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bohner M. Liner Hamiltonian difference systems: disconjugacy and Jacobi-type conditions. J Math Anal Appl, 1996, 199: 804–826MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cai X C, Yu J S. Existence of periodic solutions for a 2nth-order nonlinear difference equation. J Math Anal Appl, 2007, 329: 870–878MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cai X C, Yu J S, Guo Z M. Existence of periodic solutions for fourth-order difference equations. Comput Math Appl, 2005, 50: 49–55MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chang K C. Critical Point Theory and Its Applications (in Chinese). Shanghai: Shanghai Science and Technical Press, 1980Google Scholar
  9. 9.
    Chen S. Disconjugacy, disfocality, and oscillation of second order difference equations. J Differential Equations, 1994, 107: 383–394MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Clarke F H. Periodic solutions to Hamiltonian inclusions. J Differential Equations, 1981, 40: 1–6MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Clarke F H. Periodic solutions of Hamilton’s equations and local minima of the dual action. Trans Amer Math Soc, 1985, 287: 239–251MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cordaro G. Existence and location of periodic solution to convex and non coercive Hamiltonian systems. Discrete Contin Dyn Syst, 2005, 12: 983–996MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Elaydi S, Sacker R. Global stability of periodic orbits of non-autonomous difference equations and population biology. J Differential Equations, 2005, 208: 258–273MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Erbe L H, Yan P. Disconjugacy for linear Hamiltonian difference systems. J Math Anal Appl, 1992, 167: 355–367MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hartman P. Difference equations: disconjugacy, principal solutions, Green’s functions, complete monotonicity. Trans Amer Math Soc, 1978, 246: 1–30MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Henderson J. Existence theorems for boundary value problems for nth-order nonlinear difference equations. SIAM J Math Anal, 1989, 20: 468–478MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hooker J, Patula W. Growth and oscillation properties of solutions of a fourth order linear difference equations. J Aust Math Soc Ser B, 1985, 26: 310–328MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Guo Z M, Yu J S. Periodic and subharmonic solutions for second-order superlinear difference equations. Sci China Ser A, 2003, 46: 506–515MathSciNetGoogle Scholar
  19. 19.
    Guo Z M, Yu J S. The existence of periodic and subharmonic solutions to subquadratic second-order difference equations. J London Math Soc, 2003, 68: 419–430MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Jiang D, O’Regan D, Agarwal R P. Optimal existence theory for single and multiple positive periodic solutions to functional difference equations. Appl Math Lett, 2005, 161: 441–462MATHMathSciNetGoogle Scholar
  21. 21.
    Kelly W G, Peterson A C. Difference Equations: An Introduction with Applications. New York: Academic Press, 1991Google Scholar
  22. 22.
    Liu Y. On positive periodic solutions of functional difference equations with forcing term and applications. Comput Math Appl, 2008, 56: 2247–2255MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. New York: Springer-Verlag, 1989MATHGoogle Scholar
  24. 24.
    Patula W. Growth, oscillation and comparison theorems for second order linear difference equations. SIAM J Math Anal, 1979, 10: 1272–1279MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Rabinowitz P H. Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31: 157–184CrossRefMathSciNetGoogle Scholar
  26. 26.
    Rabinowitz P H. On subharmonic solutions of Hamiltonian systems. Comm Pure Appl Math, 1980, 33: 609–633MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Regional Conference Series in Mathematics, No. 65. Providence, RI: American Mathematical Society, 1986Google Scholar
  28. 28.
    Zhou Z, Yu J S, Guo Z M. Periodic solutions of higher-dimensional discrete systems. Proc Roy Soc Edinburgh Sect A, 2004, 134: 1013–1022MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceGuangzhou UniversityGuangzhouChina
  2. 2.Department of MathematicsWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations