Science in China Series A: Mathematics

, Volume 52, Issue 7, pp 1423–1445

Symmetric jump processes and their heat kernel estimates

Article

Abstract

We survey the recent development of the DeGiorgi-Nash-Moser-Aronson type theory for a class of symmetric jump processes (or equivalently, a class of symmetric integro-differential operators). We focus on the sharp two-sided estimates for the transition density functions (or heat kernels) of the processes, a priori Hölder estimate and parabolic Harnack inequalities for their parabolic functions. In contrast to the second order elliptic differential operator case, the methods to establish these properties for symmetric integro-differential operators are mainly probabilistic.

Keywords

symmetric jump process diffusion with jumps pseudo-differential operator Dirichlet form a prior Hölder estimates parabolic Harnack inequality global and Dirichlet heat kernel estimates Lévy system 

MSC(2000)

60J35 47G30 60J45 31C05 31C25 60J75 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stroock D W. Diffusion semigroup corresponding to uniformly elliptic divergence form operator. Lecture Notes in Math, 1321: 316–347 (1988)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bertoin J. Lévy Processes. Cambridge: Cambridge University Press, 1996MATHGoogle Scholar
  3. 3.
    Janicki A, Weron A. Simulation and Chaotic Behavior of α-Stable Processes. New York: Dekker, 1994Google Scholar
  4. 4.
    Klafter J, Shlesinger M F, Zumofen G. Beyond Brownian motion. Physics Today, 49: 33–39 (1996)CrossRefGoogle Scholar
  5. 5.
    Samorodnitsky G, Taqqu M S. Stable Non-Gaussian Random Processes. New York-London: Chapman & Hall, 1994MATHGoogle Scholar
  6. 6.
    Caffarelli L A, Salsa S, Silvestre Luis. Regularity estimates for the solution and the free boundary to theobstacle problem for the fractional Laplacian. Invent Math, 171(1): 425–461 (2008)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Silvestre L. Hölder estimates for solutions of integro differential equations like the fractional Laplace. Indiana Univ Math J, 55: 1155–1174 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Blumenthal R M, Getoor R K. Some theorems on stable processes. Trans Amer Math Soc, 95: 263–273 (1960)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kolokoltsov V. Symmetric stable laws and stable-like jump-diffusions. Proc London Math Soc, 80: 725–768 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bass R F, Levin D A. Transition probabilities for symmetric jump processes. Trans Amer Math Soc, 354: 2933–2953 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chen Z-Q, Kumagai T. Heat kernel estimates for stable-like processes on d-sets. Stochastic Process Appl, 108: 27–62 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chen Z-Q, Kumagai T. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab Theory Related Fields, 140: 277–317 (2008)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chen Z-Q, Kim P, Kumagai T. Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math Ann, 342: 833–883 (2008)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hurst S R, Platen E, Rachev S T. Option pricing for a logstable asset price model. Math Comput Modelling, 29: 105–119 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Matacz A. Financial modeling and option theory with the truncated Lévy process. Int J Theor Appl Finance, 3(1): 143–160 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Barlow M T, Bass R F, Chen Z-Q, et al. Non-local Dirichlet forms and symmetric jump processes. Trans Amer Math Soc, 361: 1963–1999 (2009)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Chen Z-Q, Kumagai T. A priori Hölder estimate, parabolic Harnack inequality and heat kernel estimates for diffusions with jumps. Revista Mathemática Iberoamericana, to appear (2009)Google Scholar
  18. 18.
    Zhang Q S. The boundary behavior of heat kernels of Dirichlet Laplacians. J Differential Equations, 182: 416–430 (2002)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chen Z-Q, Kim P, Song R. Heat kernel estimates for Dirichlet fractional Laplacian. J European Math Soc, to appear (2009)Google Scholar
  20. 20.
    Chen Z-Q, Kim P, Song R. Two-sided heat kernel estimates for censored stable-like processes. Probab Theory Related Fields, to appear (2009)Google Scholar
  21. 21.
    Chen Z-Q, Kim P, Song R. Sharp heat kernel estimates for relativistic stable processes. Preprint, 2009Google Scholar
  22. 22.
    Bass R F. SDEs with jumps. Notes for Cornell Summer School 2007. http://www.math.uconn.edu/~bass/cornell.pdf
  23. 23.
    Chen Z-Q. Multidimensional symmetric stable processes. Korean J Comput Appl Math, 6: 227–266 (1999)MATHMathSciNetGoogle Scholar
  24. 24.
    Benjamini I, Chen Z-Q, Rohde S. Boundary trace of reflecting Brownian motions. Probab Theory Relat Fields, 129: 1–17 (2004)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Bass R F, Levin D A. Harnack inequalities for jump processes. Potential Anal, 17: 375–388 (2002)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Chen Z-Q, Song R. Drift transforms and Green function estimates for discontinuous processes. J Funct Anal, 201: 262–281 (2003)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Herbst I W, Sloan D. Perturbation of translation invariant positive preserving semigroups on L 2(ℝN). Trans Amer Math Soc, 236: 325–360 (1978)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Meyer P A. Renaissance, recollements, mélanges, ralentissement de processus de Markov. Ann Inst Fourier, 25: 464–497 (1975)Google Scholar
  29. 29.
    Ikeda N, Nagasawa M, Watanabe S. A construction of Markov process by piecing out. Proc Japan Acad Ser A Math Sci, 42: 370–375 (1966)MATHMathSciNetGoogle Scholar
  30. 30.
    Barlow M T, Grigor’yan A, Kumagai T. Heat kernel upper bounds for jump processes and the first exit time. J Reine Angew Math, 626: 135–157 (2009)MATHMathSciNetGoogle Scholar
  31. 31.
    Song R, Vondraĉek Z. Parabolic Harnack inequality for the mixture of Brownian motion and stable process. Tohoku Math J, 59: 1–19 (2007)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Carlen E A, Kusuoka S, Stroock D W. Upper bounds for symmetric Markov transition functions. Ann Inst Heri Poincaré-Probab Statist, 23: 245–287 (1987)MathSciNetGoogle Scholar
  33. 33.
    Chen Z-Q, Song R. Estimates on Green functions and Poisson kernels of symmetric stable processes. Math Ann, 312: 465–601 (1998)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Kulczycki T. Properties of Green function of symmetric stable processes. Probab Math Stat, 17: 381–406 (1997)MathSciNetGoogle Scholar
  35. 35.
    Chen Z-Q, Tokle J. Global heat kernel estimates for fractional Laplacians in un bounded open sets. Preprint, 2009Google Scholar
  36. 36.
    Bogdan K, Burdzy K, Chen Z Q. Censored stable processes. Probab Theory Related Fields, 127: 89–152 (2003)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Chen Z-Q, Kim P. Green function estimate for censored stable processes. Probab Theory Related Fields, 124: 595–610 (2002)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WashingtonSeattleUSA
  2. 2.Department of MathematicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations