Advertisement

Science in China Series A: Mathematics

, Volume 51, Issue 2, pp 195–202 | Cite as

Strong law of large numbers for Markov chains indexed by an infinite tree with uniformly bounded degree

  • Huang HuiLin 
  • Yang WeiGuo 
Article

Abstract

In this paper, we study the strong law of large numbers and Shannon-McMillan (S-M) theorem for Markov chains indexed by an infinite tree with uniformly bounded degree. The results generalize the analogous results on a homogeneous tree.

Keywords

Markov chains Shannon-McMillan theorem strong law of large numbers uniformly bounded tree 

MSC(2000)

60F15 60J10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benjamini I, Peres Y. Markov chains indexed by trees. Ann Probab, 22: 219–243 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kemeny J G, Snell J L, Knapp A W. Denumberable Markov Chains. New York: Springer, 1976Google Scholar
  3. 3.
    Spitzer F. Markov random fields on an infinite tree. Ann Probab, 3: 387–398 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berger T, Ye Z. Entropic aspects of random fields on trees. IEEE Trans Inform Theory, 36: 1006–1018 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ye Z, Berger T. Ergodic, regulary and asymptotic equipartition property of random fields on trees. J Combin Inform System Sci, 21: 157–184 (1996)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Ye Z, Berger T. Information Measures for Discrete Random Fields. Beijing: Science Press, 1998zbMATHGoogle Scholar
  7. 7.
    Pemantle R. Antomorphism invariant measure on trees. Ann Prob, 20: 1549–1566 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Yang W G, Liu W. Strong law of large numbers for Markov chains fields on a Bethe tree. Statist Prob Lett, 49: 245–250 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Takacs C. Strong law of large numbers for branching Markov chains. Markov Proc Related Fields, 8: 107–116 (2001)MathSciNetGoogle Scholar
  10. 10.
    Liu W, Yang W G. A extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains. Stochastic Process Appl, 61: 129–145 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Liu W, Yang W G. The Markov approximation of the sequences of N-valued random variables and a class of deviation theorems. Stochastic Process Appl, 89: 117–130 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yang W G. Some limit properties for Markov chains indexed by a homogeneous tree. Statist Prob Lett, 65: 241–250 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Science in China Press 2008

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Jiaotong UniversityShanghaiChina
  2. 2.Faculty of ScienceJiangsu UniversityZhenjiangChina

Personalised recommendations