Science in China Series A: Mathematics

, Volume 51, Issue 7, pp 1203–1214 | Cite as

Pseudo almost periodic solutions to parabolic boundary value inverse problems

Article

Abstract

We first define the pseudo almost periodic functions in a more general setting. Then we show the existence, uniqueness and stability of pseudo almost periodic solutions of parabolic inverse problems for a type of boundary value problems.

Keywords

pseudo almost periodic function inverse problem parabolic equation boundary value problem 

MSC(2000)

35B15 35R30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang C. Pseudo almost periodic solutions of some differential equations. J Math Anal Appl, 181: 62–76 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Zhang C. Integration of vector-valued pseudo almost periodic functions. Proc Amer Math Soc, 121: 167–174 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dads E A, Ezzibi K. Existence of positive pseudo almost periodic solutions for some nonlinear delay integral equation arising in epidemic problems. Nonlinear Anal, 41: 1–13 (2000)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dads E A, Ezzibi K, Arino O. Pseudo almost periodic solutions for some differential equations in a Banach space. Nonlinear Anal, 28: 1141–1155 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alonso A I, Hong H, Obaya R. Almost periodic type solutions of differential equations with piecewise constant argument via almost periodic type sequences. Appl Math Lett, 13: 131–137 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Alonso A I, Hong H, Rojo J. A class of ergodic solutions of differential equations with piecewise constant arguments. Dynam Systems Appl, 7: 561–574 (1998)MATHMathSciNetGoogle Scholar
  7. 7.
    Basit B, Zhang C. New almost periodic type functions and solutions of differential equations. Canad J Math, 48: 1138–1153 (1996)MATHMathSciNetGoogle Scholar
  8. 8.
    Cuevas C, Pinto M. Existence and uniqueness of pseudo almost periodic solutions of semilinear Cauchy problems with non dense domain. Nonlinear Anal, 45: 73–83 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fan M, Ye D. Convergence dynamics and pseudo almost periodicity of a class of nonautonomous RFDEs with applications. J Math Anal Appl, 309: 598–625 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hong J, Nú:nez C. The almost periodic type difference equations. Math Comput Modelling, 28: 21–31 (1998)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hong J, Obaya R. Ergodic type solutions of some differential equations. In: Differential Equations and Nonlinear Mechanics. Dordrecht: Kluwer Academic Publishers, 2001, 135–152Google Scholar
  12. 12.
    Hong J, Obaya R, Gil A S. Exponential trichotomy and a class of ergodic solutions of differential equations with ergodic perturbations. Appl Math Lett, 12: 7–13 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hong J, Obaya R, Sanz A. Almost periodic type solutions of some differential equations with piecewise constant argument. Nonlinear Anal, 45: 661–688 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Li H, Huang F, Li J. Composition of pseudo almost periodic functions and semilinear differential equation. J Math Anal Appl, 255: 436–446 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Piao D. Pseudo almost periodic solutions for the systems of differential equations with piecewise constant argument [t+1/2]. Sci China Ser A-Math, 47: 31–38 (2004)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Yuan R. Pseudo-almost periodic solutions of second-order neutral delay differential equations with piecewise constant argument. Nonlinear Anal, 41: 871–890 (2000)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Zhang C. Almost Periodic Type Functions and Ergodicity. Beijing/New York-Dordrecht-Boston-London: Science Press/Kluwer, 2003MATHGoogle Scholar
  18. 18.
    Zhang C. Ergodicity and its applications in regularity and solutions of pseudo almost periodic equations. Nonlinear Anal, 46: 511–523 (2001)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Zhang C, Yao H. Converse problems of Fourier expansion and their applications. Nonlinear Anal, 56: 761–779 (2004)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ding H S, Liang J, Guérékata G M N’, et al. Pseudo-almost periodicity of some nonautonomous evolution equations with delay. Nonlinear Anal, 67: 1412–1418 (2007)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ding H S, Liang J, Guérékata G M N’, et al. Mild pseudo-almost periodic solutions of nonautonomous semiliear evolution equations. Math Comput Modelling, 45: 579–584 (2007)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Bourgain J. Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geom Funct Anal, 6: 201–230 (1996)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Corduneanu C. Almost Periodic Functions. 2nd ed. New York: Chelsea, 1989MATHGoogle Scholar
  24. 24.
    Fink A. Almost periodic differential equations. In: Lecture Notes in Mathematics, Vol. 377. Berlin-Heidelber-New York: Springer-Verlag, 1974MATHGoogle Scholar
  25. 25.
    Friedman A. Partial Differential Equations of Parabolic Type. Englewood Cliffs, NJ: Prentice Hall, 1964MATHGoogle Scholar
  26. 26.
    Levitan B M, Zhikov V V. Almost Periodic Functions and Differential Equations. Cambridge: Cambridge University Press, 1982MATHGoogle Scholar
  27. 27.
    Liang J, Maniar L, Guérékata G M N’, et al. Existence and uniqueness of C n-almost periodic solutions to some ordinary differential equations. Nonlinear Anal, 66: 1899–1910 (2007)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Shen W. Travelling waves in time almost periodic structures governed by bistable nonlinearities, I stability and uniqueness; II existence. J Differential Equations, 159: 1–101 (1999)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Xiao T J, Liang J. The Cauchy problem for higher order abstract differential equations. In: Lecture Notes in Mathematics, Vol. 1701. Berlin-Heidelber-New York: Springer-Verlag, 1998, 229–249MATHGoogle Scholar
  30. 30.
    Xiao T J, Liang J. Complete second order linear differential equations with almost periodic solutions. J Math Anal Appl, 163: 136–146 (1992)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Xiao T J, Liang J. Second order linear differential equations with almost periodic solutions. Acta Math Sin (New Ser), 7: 354–359 (1991)MATHMathSciNetGoogle Scholar
  32. 32.
    Zhang C, Yang F. Remotely almost periodic solutions of parabolic inverse problems. Nonlinear Anal, 65: 1613–1623 (2006)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Zaidman S. Almost Periodic Functions in Abstract Spaces. Boston: Pitman, 1985MATHGoogle Scholar
  34. 34.
    Guo B. Inverse Problem of Parabolic Partial Differential Equations (in Chinese). Harbin: Science and Technology Press of Heilongjiang Province, 1988Google Scholar
  35. 35.
    Zauderer E. Partial Differetial Equation of Applied Mathematics. New York: John Wiley & Sons, Inc., 1983Google Scholar
  36. 36.
    Hale J K, Sjoerd M, Verduyn L. Introduction to functional differential equations. In: Applied Mathematical Sciences, Vol. 99. New York: Springer-Verlag, 1993Google Scholar
  37. 37.
    Ladyzenskaja O A, Solonnikv V A, Uralceva N N. Linear and Quasi-linear Equations of Parabolic Type. Providence, Rhode Island: American Mathematical Society, 1968Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of MathematicsHarbin Institute of TechnologyHarbinChina

Personalised recommendations