Science in China Series A: Mathematics

, Volume 51, Issue 6, pp 995–1016

Gerbes and twisted orbifold quantum cohomology

Article

Abstract

In this paper, we construct an orbifold quantum cohomology twisted by a flat gerbe. Then we compute these invariants in the case of a smooth manifold and a discrete torsion on a global quotient orbifold.

Keywords

gerbe orbifold quantum cohomology 

MSC(2000)

53D45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen W, Ruan Y. A new cohomology theory for orbifold. Comm Math Phys, 248(1): 1–31 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Adem A, Ruan Y. Twisted orbifold K-theory. Comm Math Phy, 237(3): 533–556 (2003)MATHMathSciNetGoogle Scholar
  3. 3.
    Ruan Y. Cohomology ring of crepant resolutions of orbifolds. Gromov-Witten theory of spin curves and orbifolds. Contemp Math, Vol 403. Providence: Amer Math Soc, 2006, 117–126Google Scholar
  4. 4.
    Vafa C. Modular Invariance and discrete torsion on orbifolds. Nuclear Phys B, 273: 592–606 (1986)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Vafa C, Witten E. On orbifolds with discrete torsion. J Geom Phys, 15(3): 189–214 (1995)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ruan Y. Discrete torsion and twisted orbifold cohomology. J Symplectic Geom, 2(1): 1–24 (2003)MATHMathSciNetGoogle Scholar
  7. 7.
    Lupercio E, Uribe B. Gerbes over orbifolds and twisted K-theory. Comm Math Phys, 245(3): 449–489 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Tu J, Xu P, Laurent-Gengoux C. Twisted K-theory of differentiable stacks. Ann Sci École Norm Sup, 37(6): 841–910 (2004)MATHMathSciNetGoogle Scholar
  9. 9.
    Witten E. D-Branes And K-Theory. J High Energy Phys, 12(12): 19–41 (1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bouwknegt P, Mathai V. D-brane, B-field and twisted K-theory. J High Energy Phys, 3: 7–11 (2000)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Freed D, Hopkins M, Teleman C. Twisted equivariant K-theory with complex coefficients. J Topology, 1(1): 16–44 (2008)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lupercio E, Uribe B. Differential characters on orbifolds and string connections I. Gromov-Witten theory of spin curves and orbifolds. In: Contemp Math, Vol 403. Providence: Amer Math Soc, 2006, 127–142Google Scholar
  13. 13.
    Chen W, Ruan Y. Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics. Contemp Math, Vol 310. Providence: Amer Math Soc, 2002, 25–85Google Scholar
  14. 14.
    Ruan Y. String geometry and topology of orbifolds. Symposium in Honor of C H Clemens. In: Contemp Math, Vol 312. Providence: Amer Math Soc, 2002, 187–233Google Scholar
  15. 15.
    Chen W. A homotopy theory of orbispaces. arXiv:math.AT/0102020Google Scholar
  16. 16.
    Lupercio E, Uribe B. Loop groupoids, gerbes and twisted sectors on orbifolds. Orbifolds in mathematics and physics. In: Contemp Math, Vol 310. Providence, RI: Amer Math Soc, 2002, 163–184Google Scholar
  17. 17.
    Adem A, Pan J. Toroidal orbifolds, gerbes and group cohomology. Trans Amer Math Soc, 358(9): 3969–3983 (2006)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hitchin N. Lectures on special Lagrangian submanifolds. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds. Stud Adv Math, Vol 23. Providence: Amer Math Soc, 2001, 151–182Google Scholar
  19. 19.
    Brylinski J L. Loop group, Characteristic classes and geometric quantization. In: Progress in Mathematics, Vol 107. Boston: Birkhäuser Boston Inc, 1993Google Scholar
  20. 20.
    Moerdijk I. Proof of a conjecture of A. Haefliger. Topology, 37(4): 735–741 (1998)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Moerdijk I, Pronk D. Orbifolds, sheaves and groupoids. K-theory, 12(1): 3–21 (1997)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Adem A, Leida J, Ruan Y. Orbifolds and stringy topology. In: Cambridge Tracts in Mathematics, Vol 171. Cambridge: Cambridge University Press, 2007Google Scholar
  23. 23.
    Jarvis T J, Kaufmann R, Kimura T. Pointed admissible G-covers and G-equivariant cohomological field theories. Compos Math, 141(4): 926–978 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Institute of Mathematics, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  2. 2.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of MathematicsThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations