Science in China Series A: Mathematics

, Volume 51, Issue 6, pp 995–1016

Gerbes and twisted orbifold quantum cohomology



In this paper, we construct an orbifold quantum cohomology twisted by a flat gerbe. Then we compute these invariants in the case of a smooth manifold and a discrete torsion on a global quotient orbifold.


gerbe orbifold quantum cohomology 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen W, Ruan Y. A new cohomology theory for orbifold. Comm Math Phys, 248(1): 1–31 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Adem A, Ruan Y. Twisted orbifold K-theory. Comm Math Phy, 237(3): 533–556 (2003)MATHMathSciNetGoogle Scholar
  3. 3.
    Ruan Y. Cohomology ring of crepant resolutions of orbifolds. Gromov-Witten theory of spin curves and orbifolds. Contemp Math, Vol 403. Providence: Amer Math Soc, 2006, 117–126Google Scholar
  4. 4.
    Vafa C. Modular Invariance and discrete torsion on orbifolds. Nuclear Phys B, 273: 592–606 (1986)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Vafa C, Witten E. On orbifolds with discrete torsion. J Geom Phys, 15(3): 189–214 (1995)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ruan Y. Discrete torsion and twisted orbifold cohomology. J Symplectic Geom, 2(1): 1–24 (2003)MATHMathSciNetGoogle Scholar
  7. 7.
    Lupercio E, Uribe B. Gerbes over orbifolds and twisted K-theory. Comm Math Phys, 245(3): 449–489 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Tu J, Xu P, Laurent-Gengoux C. Twisted K-theory of differentiable stacks. Ann Sci École Norm Sup, 37(6): 841–910 (2004)MATHMathSciNetGoogle Scholar
  9. 9.
    Witten E. D-Branes And K-Theory. J High Energy Phys, 12(12): 19–41 (1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bouwknegt P, Mathai V. D-brane, B-field and twisted K-theory. J High Energy Phys, 3: 7–11 (2000)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Freed D, Hopkins M, Teleman C. Twisted equivariant K-theory with complex coefficients. J Topology, 1(1): 16–44 (2008)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lupercio E, Uribe B. Differential characters on orbifolds and string connections I. Gromov-Witten theory of spin curves and orbifolds. In: Contemp Math, Vol 403. Providence: Amer Math Soc, 2006, 127–142Google Scholar
  13. 13.
    Chen W, Ruan Y. Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics. Contemp Math, Vol 310. Providence: Amer Math Soc, 2002, 25–85Google Scholar
  14. 14.
    Ruan Y. String geometry and topology of orbifolds. Symposium in Honor of C H Clemens. In: Contemp Math, Vol 312. Providence: Amer Math Soc, 2002, 187–233Google Scholar
  15. 15.
    Chen W. A homotopy theory of orbispaces. arXiv:math.AT/0102020Google Scholar
  16. 16.
    Lupercio E, Uribe B. Loop groupoids, gerbes and twisted sectors on orbifolds. Orbifolds in mathematics and physics. In: Contemp Math, Vol 310. Providence, RI: Amer Math Soc, 2002, 163–184Google Scholar
  17. 17.
    Adem A, Pan J. Toroidal orbifolds, gerbes and group cohomology. Trans Amer Math Soc, 358(9): 3969–3983 (2006)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hitchin N. Lectures on special Lagrangian submanifolds. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds. Stud Adv Math, Vol 23. Providence: Amer Math Soc, 2001, 151–182Google Scholar
  19. 19.
    Brylinski J L. Loop group, Characteristic classes and geometric quantization. In: Progress in Mathematics, Vol 107. Boston: Birkhäuser Boston Inc, 1993Google Scholar
  20. 20.
    Moerdijk I. Proof of a conjecture of A. Haefliger. Topology, 37(4): 735–741 (1998)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Moerdijk I, Pronk D. Orbifolds, sheaves and groupoids. K-theory, 12(1): 3–21 (1997)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Adem A, Leida J, Ruan Y. Orbifolds and stringy topology. In: Cambridge Tracts in Mathematics, Vol 171. Cambridge: Cambridge University Press, 2007Google Scholar
  23. 23.
    Jarvis T J, Kaufmann R, Kimura T. Pointed admissible G-covers and G-equivariant cohomological field theories. Compos Math, 141(4): 926–978 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Institute of Mathematics, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  2. 2.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of MathematicsThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations