Advertisement

Science in China Series A: Mathematics

, Volume 50, Issue 6, pp 761–772 | Cite as

Maslov-type index and brake orbits in nonlinear Hamiltonian systems

  • Duan-zhi Zhang
Article

Abstract

In this paper, we study the Maslov-type index theory for linear Hamiltonian systems with brake orbits boundary value conditions and its applications to the existence of multiple brake orbits of nonlinear Hamiltonian systems.

Keywords

brake orbit Maslov-type index relative Morse index dual variational method 

MSC(2000)

58E05 70H05 34C25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Long Y, Zhang D, Zhu C. Multiple brake orbits in bounded convex symmetric domains. Advances in Math, 203: 568–635 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Booss B, Furutani K. The Maslov-type index a functional analytical definition and the spectral flow formula. Tokyo J Math, 21: 1–34 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Dong Y. Maslov type index theory for linear Hamiltonian systems with Bolza boundary value conditions and multiple solutions for nonlinear Hamiltonian systems. Pacific J Math, 221(2): 253–280 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Cappell S E, Lee R, Miller E Y. On the Maslov-type index. Comm Pure Appl Math, 47: 121–186 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Liu C. Maslov-type index theory for symplectic paths with Lagrangian boundary conditions. Advanced Nonlinear Studies. In pressGoogle Scholar
  6. [6]
    Liu C. Asymptotically linear hamiltonian systems with lagrangian boundary conditions. Pacific J Math. In pressGoogle Scholar
  7. [7]
    Robbin J, Salamon D. The Maslov indices for paths. Topology, 32: 827–844 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Atiyah M F, Patodi V K, Singer I M. Spectral asymmetry and Riemannian geometry, I. Proc Camb Phic Soc, 77: 43–69 (1975)zbMATHMathSciNetGoogle Scholar
  9. [9]
    Robbin J, Salamon D. The spectral flow and the Maslov-type index. Bull London Math Soc, 27: 1–33 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Zhu C, Long Y. Maslov-type index theory for symplectic paths and spectral flow, I. Chinese Ann Math Ser B, 20(4): 413–424 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Zhu C. TheMorse index theorem for regular Lagrangian systems, preprint http://www.mis.mpg.de/preprints/2003/preprint2003_55.pdf
  12. [12]
    Ekeland I. Convexity Methods in Hamiltonian Mechanics. Berlin: Springer, 1990zbMATHGoogle Scholar
  13. [13]
    Ekeland I, Hofer H. Convex Hamiltonian energy surfaces and their closed trajectories. Comm Math Physics, 113: 419–467 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Viterbo C. Equivariant Morse theory for starshaped Hamiltonian systems. Trans Amer Math Soc, 311: 621–655 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Hu X, Long L. Closed characteristics on non-degenerate star-shaped hypersurfaces in ℝ2n. Sci China Ser A: Math, 45(8): 1038–1052 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Chang K C. Infinite Dimensional Morse Theorey and Multiple Solution Problems. Basel: Birkhauser, (1993)Google Scholar

Copyright information

© Science in China Press 2007

Authors and Affiliations

  • Duan-zhi Zhang
    • 1
  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations