Advertisement

Journal of Systems Science and Complexity

, Volume 32, Issue 1, pp 3–36 | Cite as

On the Contribution of Wu Wen-Tsün to Algebraic Topology

  • Jean-Paul BrasseletEmail author
Article

Abstract

The aim of this article is to present the contribution of Wu Wen-Tsün to Algebraic Topology and more precisely to the theory of characteristic classes. Several papers provide complete and welldocumented biography and academic career of Wu Wen-Tsün, in particular, Hudecek, 2014; O’Connor and Robertson, 2006; Wen-Tsün Wu’s Academic Career, 2006; Selected works of Wen-Tsun Wu, 2008. The author does not repeat the details provided in these papers concerning the Wu Wen-Tsün’s bibliography, we will just mention people involved in the Wu Wen-Tsün’s period in France.

In addition to Wu Wen-Tsün’s papers, the Dieudonné’s book (Dieudonné, 1960) provides an excellent presentation of main results of Wu Wen-Tsün in Algebraic and Differential Topology. The author will use and abuse of this book (and refer to) when suitable.

In the introduction, the author recalls mainly historical facts concerning the contribution of Wu Wen-Tsün to Algebraic Topology. The second section shows specifically the contribution of Wu Wen-Tsün to the Stiefel-Whitney classes and introduces the third section, dealing with the (real) Wu classes. The author provides definition, properties as well as further developments and generalizations of the Wu classes. The fourth and fifth sections are devoted to recent applications: In Cobordism theory and in Mathematical Physics. The author notices that Wu classes have been used as well in other domains, in particular surgery theory (Madsen and Milgram, 1979). The last section concerns the complex Wu classes and shows that the more recent Mather classes coincide with the previously defined complex Wu classes, that is a result from Zhou (1994) (see also Liu, 1996).

This article is devoted to the contribution of Wu Wen-Tsün to the theory of Characteristic Classes, which coincides with his “French period” (1947–1951). However, speaking of Algebraic Topology, it is worthwhile to mention the important contribution of Wu Wen-Tsün to the Theory of realization of complexes or manifolds in Euclidean spaces and of embedding classes. That coincides with his return to China (1956–1965).

Keywords

Algebraic topology characteristic class cobordism theory mathematical physics Wu Class 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wu W T, Note sur les produits essentiels symétriques des espaces topologiques, C. R. Acad. Sci. Paris, 1947, 16: 1139–1141.zbMATHGoogle Scholar
  2. [2]
    Wu W T, Classes caractéristiques et i-carrés d’une variété, C. R. Acad. Sci. Paris, 1950, 230: 508–511.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Wu W T, On the realization of complexes in Euclidean spaces I, Sciencia Sinica, Mathematics, 1958, 7(3): 251–297, First published in Chinese in Acta Matematica Sinica, 1955, 5(1): 505–552.Google Scholar
  4. [4]
    Wu W T, On the imbedding of polyhedrons in Euclidean spaces, Bulletin de l’Académie Polonaise des Sciences, Cl. III–Vol IV, 1956, (9): 573–577.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Wu W T, On the realization of complexes in Euclidean spaces II, Sciencia Sinica, Mathematics, 1958, 7(4): 365–387, First published in Chinese in Acta Matematica Sinica, 1957, 7(1): 79–101.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Wu W T, On the realization of complexes in Euclidean spaces III, Acta Matematica Sinica, 1958, 8(1): 79–94 (translated, 666–678).MathSciNetGoogle Scholar
  7. [7]
    Wu W T, On the imbedding of orientable manifolds in a Euclidean space, Sciencia Sinica, Mathematics, 1963, 12(1): 25–33.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Wu W T, A theorem on immersion, Sciencia Sinica (Notes), 1963, 13(1): 160.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Wu W T, On the immersion of C -3-manifolds in a Euclidean space, Sciencia Sinica (Notes), 1963, 13(1): 335.Google Scholar
  10. [10]
    Wu W T, On the notion of imbedding classes, Sciencia Sinica (Notes), 1963, 13(4): 681–682.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Stiefel E, Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten, Comm. Math. Helv., 1935, 25: 305–353.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Whitney H, Sphere spaces, Proc. Nat. Acad. Sci., 1935, 21: 462–468.CrossRefzbMATHGoogle Scholar
  13. [13]
    Whitney H, On the theory of sphere bundles, Proc. Nat. Acad. Sci., 1940, 26: 143–153.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Steenrod N, Topology of Fibre Bundles, Princeton University Press, 1951.CrossRefzbMATHGoogle Scholar
  15. [15]
    Whitney H, On the topology of differentiable manifolds, Lecture in Topology, Conference at University of Michigan, University of Michigan Press, 1941, 101–141.Google Scholar
  16. [16]
    Chern S S, On the multiplication in the characteristic ring of a sphere bundle, Ann. of Math, 1948, 49: 362–372.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Wu W T, On the product of sphere bundles and the duality theorem modulo two, Ann. of Math, 1948, 49: 641–653.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Dieudonné J A, A History of Algebraic and Differential Topology, Birkhäuser, Boston, 1989, 1900–1960.Google Scholar
  19. [19]
    Pontrjagin L S, Characteristic cycles on differentiable manifolds, Math. Sbor., 1947, 21(63): 233–284, Amer. Math. Soc., Translations, series 1, no 32.MathSciNetGoogle Scholar
  20. [20]
    Ehresman C, Sur la topologie de certain espaces homogènes, Ann. of Math., 1934, 35: 396–443.MathSciNetCrossRefGoogle Scholar
  21. [21]
    Schubert H, Kalkül der abzählende Geometrie, Teubner Verlag, Leipzig, 1789.Google Scholar
  22. [22]
    Chern S S, Characteristic classes of hermitian manifolds, Ann. of Math, 1946, 47: 85–121.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Milnor J and Stasheff J, Characteristic Classes, Princeton University Press, Princeton, 1974.zbMATHGoogle Scholar
  24. [24]
    Steenrod N, Products of cocycles and extensions of mappings, Ann. of Math., 1947, 48: 290–320.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Cartan H, Séminaire Henri Cartan tome 2 (1949–1950) exp. 14 and exp. 15. Carrés de Steenrod, exposés de H. Cartan on 13th and 20th March 1950.Google Scholar
  26. [26]
    Adem J, The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. USA, 1952, 38: 720–724.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Serre J P, Oeuvres vol.1, Springer, Berlin-Heidelberg, New York, Tokyo, 1986, 224.Google Scholar
  28. [28]
    Steenrod N and Epstein D B A, Cohomology operations, Annals of Mathematics Studies, 50, Princeton University Press.Google Scholar
  29. [29]
    Sati H, Twisted topological structures related to M-branes II: Twisted Wu and Wuc structures, arXiv: 1109.4461.Google Scholar
  30. [30]
    Yoshida T, Universal Wu classes, Hiroshima Math. J., 1987, 17(3): 489–493.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Hirzebruch F, Berger T, and Jung R, Manifolds and Modular Forms, Friedr. Vieweg and Sohn, Braunschweig, 1992.CrossRefzbMATHGoogle Scholar
  32. [32]
    Hirzebruch F, Topological Methods in Algebraic Geometry, Springer-Verlag, 1966.CrossRefzbMATHGoogle Scholar
  33. [33]
    Wu W T, Les i-carrés dans une variété grassmannienne, C. R. Acad. Sci. Paris, 1950, 230: 918–920.MathSciNetzbMATHGoogle Scholar
  34. [34]
    Hirsch G, La géométrie projective et la topologie des espaces fibrés Coll. de Top. Algébrique, Paris, C.N.R.S., 1947, 35–42.Google Scholar
  35. [35]
    Adams J F, On the structure and applications of the Steenrod algebra, Comment. Math. Helv., 1958, 3: 80–214.MathSciNetGoogle Scholar
  36. [36]
    Wu W T, On the relations between Smith operations and Steenrod powers, Acta Math. Sinica, 1957, 7: 235–241 (in Chinese), Translation in Sixteen papers on Topology and One in Game Theory, American Mathematical Society Translations, by Chow Sho-kwan, 1964, 38(2): 269–276.MathSciNetGoogle Scholar
  37. [37]
    Atiyah M F and Hirzebruch F, Cohomologie-Operationen und characteristische Klassen, Math. Z., 1961, 77: 149–187.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    Knapp K, Wu class - definition Bulletin of the Manifold Atlas - 2014, www.map.mpimbonn.mpg.de/Wu_class.Google Scholar
  39. [39]
    Hopkins M J and Singer I M, Quadratic functions in geometry, topology and M-theory, J. Differential Geom., 2005, 70(3): 329–452.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    Thom R, Quelques propriétées globales des variétés différentiables, Comment. Math. Helvet., 1954, 28: 17–86.CrossRefzbMATHGoogle Scholar
  41. [41]
    Stong R E and Yoshida T, Wu classes, Proceedings of the American Mathematical Society, 1987, 100(2).Google Scholar
  42. [42]
    Dold A, Vollständigkeit der Wu-schen Relationen zwischen den Stiefel-Whitneyschen Zahlen differenzierbarer Mannigfaltigkeiten, Math. Z., 1956, 65: 200–206.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    Milnor J, On the Stiefel-Whitney numbers of complex manifolds and of Spin manifolds, Topology, 2: 223–230.Google Scholar
  44. [44]
    Sullivan D, Combinatorial invariants of analytic spaces, Proc. of Liverpool Singularities I. Lecture Notes in Math 192, Springer Verlag, 165–177.Google Scholar
  45. [45]
    Halperin S and Toledo D, Stiefel-Whitney homology classes, Ann. of Maths, Second Series, 1972, 96(3): 511–525.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    Goresky M and MacPherson R, Intersection homology theory, Topology, 1980, 19(2): 135–162.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    Goresky M and Pardon W, Wu numbers of singular spaces, Topology, 1989, 28: 325–367.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    Barthel G, Brasselet J P, Fieseler K, et al., Relèvement de cycles algébriques et homomorphismes associés en homologie d’intersection [Lifting of algebraic cycles and associated homomorphisms in intersection homology], Ann. of Math., 1995, 141(2): 147–179.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    Goresky M and MacPherson R, Intersection homology II, Invent. Math., 1983, 72(1): 77–129.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    Borel A, et al, Intersection Cohomology, Progress in Mathematics, Swiss seminars, Boston, 1984, 50.CrossRefGoogle Scholar
  51. [51]
    Fulton W and MacPherson R, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc., 1981, 31(243).Google Scholar
  52. [52]
    Goresky M, Intersection Homology operations, Comment. Math. Helvet., 1984, 59: 485–505.MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    Goresky M, Whitney stratified chains and cochains, Trans. Amer. Math. Soc., 1981, 267: 175–196.MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    Siegel P, Witt spaces: A geometric cycle theory for KO-homology at odd primes, Amer. J. Math., 1983, 105(5): 1067–1105.MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    Brasselet J P, Libardi A K M, Rizziolli E C, et al., The Wu Classes on Cobordism Theory, Preprint 2017.Google Scholar
  56. [56]
    Brasselet J P, Libardi A K M, Rizziolli E C, et al., Cobordism of Maps of Locally Orientable Witt Spaces, arXiv: 1403.1983v1.Google Scholar
  57. [57]
    Belov D M and Moore G W, Holographic action for the self-dual field, https://arxiv.org/abs/hepth/0605038.Google Scholar
  58. [58]
    Witten E, Five-Brane effective action in M-theory, J. Geom. Phys., 1997, 22: 103–133.MathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    Monnier S, Topological field theories on manifolds with Wu structures, Rev. Math. Phys., 2017, 29(5): 1750015.MathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    Madsen I and Milgram R J, The Classifying Spaces for Surgery and Cobordism of Manifolds, Princeton University Press and University of Tokyo, Princeton and Tokyo, 1979.zbMATHGoogle Scholar
  61. [61]
    May J P, Simplicial Objects in Algebraic Topology, Chicago Lectures in Mathematics, 1967.zbMATHGoogle Scholar
  62. [62]
    Sati H, Global anomalies in type IIB string theory, arXiv: 1109.4385.Google Scholar
  63. [63]
    Wu W T, On Chern characteristic classes of an algebraic variety, Shuxue Jinzhan, 1965, 8: 395–401 (in Chinese).MathSciNetGoogle Scholar
  64. [64]
    Schwartz M H, Classes caractéristiques définies par une stratification d’une variété analytique complexe, CRAS, 1965, 260: 3262–3264, 3535–3537.zbMATHGoogle Scholar
  65. [65]
    MacPherson R, Characteristic classes for singular varieties, Proc. 9th Brazilian Math. Coll. Poços de Caldas, 1973, II: 321–327.Google Scholar
  66. [66]
    Zhou J, Classes de Wu et classes de Mather, C. R. Acad. Sci. Paris, 1994, 319(I): 171–174.MathSciNetzbMATHGoogle Scholar
  67. [67]
    Zhou J, Classes de Chern pour les variétés singulières, Thèse soutenue le 8 février 1995, Université d’Aix-Marseille II.Google Scholar
  68. [68]
    Brasselet J P, Schwartz M H, Sur les classes de Chern d’un ensemble analytique complexe, Astérisque 82–83, 1981, 93–147.Google Scholar
  69. [69]
    Wu W T, Algebraic varieties with dual rational dissections, On Shuxue Jinzhan, 1965, 8: 402–409 (in Chinese).MathSciNetGoogle Scholar
  70. [70]
    Hodge W V D and Pedoe D, Methods of Algebraic Geometry, Volume I (Book II), Cambridge University Press, Cambridge, 1994 [1947].CrossRefzbMATHGoogle Scholar
  71. [71]
    Liu X F, Chern classes of singular algebraic varieties, Science in China (Ser. A), 1996, 26(8): 701–705 (in Chinese).Google Scholar
  72. [72]
    Gamkrelidze P B, Computation of the Chern cycles of algebraic manifolds, Doklady Akad. Nauk SSSR, (N.S.), 1953, 90(5): 719–722 (in Russian).MathSciNetGoogle Scholar
  73. [73]
    Gamkrelidze P B, Chern’s cycles of algebraic manifolds, Izv. Acad. Scis., CCCP, Math. Series, 1956, 20: 685–706 (in Russian).MathSciNetGoogle Scholar
  74. [74]
    Piene R, Cycles polaires et classes de Chern pour les variétés projectives singulières, Séminaire sur les singularités des surfaces 1977–1978, Centre de Math., Ecole Polytechnique, 7–34.Google Scholar
  75. [75]
    Pontrjagin L S, Mappings of a 3-dimensional sphere into an dimensional complex, Dokl. Akad. Nauk SSSR, 1942, 34: 35–37 (in Russian).MathSciNetGoogle Scholar
  76. [76]
    Brumfiel G W and Morgan J W, Quadratic functions, the index modulo 8 and a Z/4-Hirzebruch formula, Topology, 1973, 12: 105–122.MathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    Hudecek J, Reviving Ancient Chinese Mathematics, Mathematics, History and Politics in the Work of Wen-Tsün Wu, Routledge, Taylor and Francis group, London and New-York, 2014.zbMATHGoogle Scholar
  78. [78]
    O’Connor J J and Robertson E F, http://www-history.mcs.st-andrews.ac.uk/Biographies/Wu_Wen-Tsun.html.Google Scholar
  79. [79]
    Wen-Tsün Wu’s Academic Career, Communicated by Xiao-shan Gao, Beijing, ACM Communications in Computer Algebra, 2006, 40(2). The official press release can be found at The Shaw Prize Foundation webpage, 2006, http://www.shawprize.org/.Google Scholar
  80. [80]
    Wu W T, Selected Works of Wen-Tsün Wu, World Scientific Publishing Co. Re. Ltd, 2008.CrossRefzbMATHGoogle Scholar
  81. [81]
    Li B, Wu Wen-Tsün — An outstanding Mathematician, Acta Mathematica Scientia, 1989, 9(4): 361–365.MathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    Cheeger J, A Combinatorial Formula for Stiefel-Whitney Homology Classes, Eds. by Cantrell J C and Edwards C H, Markham Publ. Co., 1970.Google Scholar
  83. [83]
    Ehresman C, Sur la topologie de certaines variétés algébriques réelles, J. Math. Pures Appl., 1937, 16(9): 69–100.Google Scholar
  84. [84]
    James I M, History of Topology, North-Holland, Elesevier Science B.V., 1999.zbMATHGoogle Scholar
  85. [85]
    Mosher R E and Tangora M C, Cohomology Operations and Applications in Homotopy Theory, Harper & Row, Publishers, New York-London, 1968.zbMATHGoogle Scholar
  86. [86]
    Poincaré H, Analysis situs, Journal de l’Ecole Polytechnique, 1895, (1): 1–121.zbMATHGoogle Scholar
  87. [87]
    Stong R E, Cobordism of maps, Topology 5, 1966, 245–258.Google Scholar
  88. [88]
    Stong R E, Notes on Cobordism Theory, Princeton Legacy Library, Princeton, 1968.zbMATHGoogle Scholar
  89. [89]
    Taylor L R, Stiefel-Whitney homology classes, The Quarterly Journal of Mathematics, 1977, 28(4): 381–387.MathSciNetCrossRefzbMATHGoogle Scholar
  90. [90]
    Wu W T, Les classes caractéristiques d’un espace fibré, Séminaire Cartan, 1949–50, exposés 17 and 18, 24th April and 8th May 1950.Google Scholar
  91. [91]
    Wu W T, Sur les classes caractéristiques des structures fibrées sphériques, Publ. de l’Inst. Math. de l’Univ. de Strasbourg, XI, Paris, Herman, 1952.zbMATHGoogle Scholar
  92. [92]
    Wu W T, On squares in Grassmann manifolds, Acta Math. Sinica, 1953, 2: 203–229 (in Chinese), Translation in Sixteen papers on Topology and One in Game Theory, American Mathematical Society Translations, by Chow Sho-kwan, 1964, 38(2): 235–258.MathSciNetGoogle Scholar
  93. [93]
    Wu W T, On Pontjagin classes V, Acta Math. Sinica, 1955, 5: 401–410 (in Chinese), Translation in Sixteen papers on Topology and One in Game Theory, American Mathematical Society Translations, by Chow Sho-kwan, 1964, 38(2): 259–268.MathSciNetGoogle Scholar
  94. [94]
    Wu W T, On Chern numbers of algebraic varieties with arbitrary singularities, Acta Math. Sinica, New Series, 1987, (3): 227–236.MathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    Wu W T, Memory of My First Research Teacher: The Great Geometer Chern Shiing-Shen, “Inspired by S. S. Chern”, A Memorial Volume in Honor of A Great Mathematician, Nankai Tracts in Mathematics, Vol. 11, Ed. by Griffiths P A, World Scientific, 461–485.Google Scholar

Copyright information

© Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.I2M (CNRS)-Aix-Marseille UniversityMarseilleFrance

Personalised recommendations