Advertisement

Optimal Noise Suppression of Phase Damping Quantum Systems via Weak Measurement

  • Sajede Harraz
  • Shuang CongEmail author
  • Sen Kuang
Article
  • 9 Downloads

Abstract

One qubit subjected to the effect of phase damping in a two-level quantum system with arbitrary pure initial state is studied in this paper. The aim of this paper is to find the optimal control scheme to correct the qubit back as close as possible to its initial state. The strength-dependent measurements and control correction rotation in different bases are designed to protect the arbitrary pure state of qubit. The authors design the optimal weak measurement strength to achieve the best trade-off between gaining the information of the system and the disturbance through measurement. The authors study the suppression of phase damping in two cases: There is and isn’t the y component in initial state. The authors deduce the optimal parameters and performances of the control schemes for the various initial state situations. Simulation results demonstrate the effectiveness of the proposed control schemes.

Keywords

Open quantum system optimal noise suppression phase damping quantum system control weak measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cong S, Control of Quantum Systems: Theory and Methods, John Wiley and Sons, Singapore Pte. Ltd. 2014.CrossRefzbMATHGoogle Scholar
  2. [2]
    Cramer J, Kalb N, Rol M A, et al., Repeated quantum error correction on a continuously encoded qubit by real-time feedback, Nature Communications, 2016, 7: 11526.CrossRefGoogle Scholar
  3. [3]
    Unden T, Balasubramanian P, Louzon D, et al., Quantum metrology enhanced by repetitive quantum error correction, Physical Review Letters, 2016, 116(23): 230502.CrossRefGoogle Scholar
  4. [4]
    Chen M, Kuang S, and Cong S, Rapid Lyapunov control for decoherence-free subspaces of Markovian open quantum systems, J. Franklin Inst., 2017, 354(1): 439–455.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Cong S and Yang F, Control of quantum states in decoherence-free subspaces, J. Phys. A Math. Theor., 2013, 46(7): 75305.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Chan L and Cong S, Phase decoherence suppression in arbitrary n-level atom in-configuration with Bang-Bang controls, Intelligent Control and Automation (WCICA), 2011 9th World Congress on IEEE, 2011, 196–201.CrossRefGoogle Scholar
  7. [7]
    Viola L and Lloyd S, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A., 1998, 58(4): 2733–2744.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Carvalho A R R, Reid A J S, and Hope J J, Controlling entanglement by direct quantum feedback, Phys. Rev. A., 2008, 78(1): 12334.CrossRefGoogle Scholar
  9. [9]
    Zhang J, Liu Y X, Wu R B, et al., Quantum feedback: Theory, experiments, and applications, Physics Reports, 2017, 679: 1–60.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Zhang J, Wu R B, Li C W, et al., Protecting coherence and entanglement by quantum feedback controls, IEEE Transactions on Automatic Control, 2010, 55(3): 619–633.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Ganesan N and Tarn T J, Decoherence control in open quantum systems via classical feedback, Phys. Rev. A., 2007, 75(3): 32323.CrossRefGoogle Scholar
  12. [12]
    Clausen J, Bensky G, and Kurizki G, Path-optimized minimal-energy protection of quantum operations from decoherence, Physical Review Letters, 2010, 104(4): 040401.CrossRefGoogle Scholar
  13. [13]
    Braczyk A M, Mendona P E M F, Gilchrist A, et al., Quantum control of a single qubit, Phys. Rev. A., 2007, 75(1): 012329.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Brif C, Chakrabarti R, and Rabitz H, Focus on quantum control, New Journal of Physics, 2009, 11(10): 105030.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Wiseman H M and Doherty A C, Optimal unravellings for feedback control in linear quantum systems, Physical Review Letters, 2005, 94(7): 70405.CrossRefGoogle Scholar
  16. [16]
    Wiseman H M and Milburn G J, Quantum Measurement and Control, Cambridge University Press, Cambridge, 2009.CrossRefzbMATHGoogle Scholar
  17. [17]
    Harraz S, Yang J, Li K, et al., Quantum state transfer control based on the optimal measurement, Optim. Control Appl. Methods, 2016, 38(5): 744–753.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Svensson B E Y, Pedagogical review of quantum measurement theory with an emphasis on weak measurements, Quanta, 2013, 2(1): 18–49.CrossRefzbMATHGoogle Scholar
  19. [19]
    Xiao X and Feng M, Reexamination of the feedback control on quantum states via weak measurements, Phys. Rev. A. At. Mol. Opt. Phys., 2011, 83(5): 2622–2627.CrossRefGoogle Scholar
  20. [20]
    Gillett G G, Dalton R B, Lanyon B P, et al., Experimental feedback control of quantum systems using weak measurements, Phys. Rev. Lett., 2010, 104(8): 080503.CrossRefGoogle Scholar
  21. [21]
    Yang Y, Zhang X Y, Ma J, et al., Extended techniques for feedback control of a single qubit, Phys. Rev. A. At. Mol. Opt. Phys., 2013, 87(1): 790–791.Google Scholar
  22. [22]
    Yan Y, Zou J, Xu B M, et al., Measurement-based direct quantum feedback control in an open quantum system, Phys. Rev. A. At. Mol. Opt. Phys., 2013, 88(3): 032320.CrossRefGoogle Scholar
  23. [23]
    Audretsch J, Konrad T, and Scherer A, Sequence of unsharp measurements enabling a real-time visualization of a quantum oscillation, Phys. Rev. A., 2001, 63(5): 52102.CrossRefGoogle Scholar

Copyright information

© Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AutomationUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations