Advertisement

The superiorities of Bayes linear unbiased estimation in partitioned linear model

  • Weiping Zhang
  • Laisheng Wei
  • Yu Chen
Article

Abstract

In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in terms of the Bayes mean square error matrix (BMSEM) criterion and Pitman closeness (PC) criterion.

Key words

Bayes linear unbiased estimation Bayes mean square error matrix criterion least square estimation partitioned linear model Pitman closeness criterion 

References

  1. [1]
    S. G. Wang, et al., An Introduction to Linear Models, Science Press, Beijing, 2004.Google Scholar
  2. [2]
    G. E. P. Box and G. Tiao, Bayesian Inference in Statistical Analysis, MA: Addison-Wesley, Reading, 1973.zbMATHGoogle Scholar
  3. [3]
    J. O. Berger, Statistical Decision Theory and Bayesian Analysis, Springer, Berlin, 1985.zbMATHGoogle Scholar
  4. [4]
    S. G. Wang and S. C. Chow, Advanced Linear Models Theory and Applications, Marcel Dekker, New York, 1994.Google Scholar
  5. [5]
    C. R. Rao, Linear Statistical Inference and Its Applications, 2nd Ed., Wiley, New York, 1973.zbMATHCrossRefGoogle Scholar
  6. [6]
    C. R. Rao, Estimation of parameters in a linear model, The 1975 World Memorial Lectures, Ann. Statist., 1976, 4: 1023–1037.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    M. H. J. Gruber, Regression Estimators, A Comparative Study, Academic Press, Boston, 1990.zbMATHGoogle Scholar
  8. [8]
    L. S. Wei and G. Trenkler, The Bayes estimator in a misspecified linear regression model, Test, 1996, 5: 113–123.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    E. J. G. Pitman, The closest estimates of statistical parameters, Proc. Camb. Phil. Soc. 1937, 33: 212–222.CrossRefGoogle Scholar
  10. [10]
    C. R. Rao, Some comments on the minimum mean square as criterion of estimation, M. Csorgo, D. A. Dowson, et al. Ed., Statistics and Related Topics, North Holland, Amsterdam, 1981.Google Scholar
  11. [11]
    C. R. Rao, J. P. Keating, and R. L. Mason, The Pitman nearness criterion and determination, Comm. Statist. Theory and Methods, 1986, 15: 3173–3191.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    J. P. Keating, R. L. Mason, and P. K. Sen, Pitman’s Measure of Closeness: A Comparison of Statistical Estimators, Society of Industrial and Applied Mathematics, Philadelphia, 1993.zbMATHGoogle Scholar
  13. [13]
    M. Ghosh and P. K. Sen, Bayesian Pitman closeness, Comm. Statist. Theory and Methods, 1991, 20: 3659–3678.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Institute of Systems Science, Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Statistics and FinanceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations