Advertisement

Fostering integrated mental models of different professional knowledge domains: instructional approaches and model-based analyses

  • Thomas LehmannEmail author
  • Pablo Pirnay-Dummer
  • Florian Schmidt-Borcherding
Research Article
  • 40 Downloads

Abstract

Recent research on expert teachers suggests that an integrated understanding across the core domains of teachers’ knowledge is crucial for their professional competence. However, in initial teacher education pre-service teachers seem to struggle with the integration of knowledge represented in multiple domain-specific sources into a coherent structure (e.g., textbooks that focus either on content knowledge, on content-specific pedagogical knowledge, or on general pedagogical knowledge). The purpose of this study was to investigate the effectiveness of writing tasks (unspecific vs. argumentative) and prompts (i.e., focus questions) on pre-service teachers’ construction of a mental model that interrelates information from multiple domain-specific documents. Data of ninety-two pre-service teachers, who participated in a laboratory experiment where they read three domain-specific textbook excerpts and wrote essays for global comprehension, were analyzed using automated structural and semantic measures. In line with prior research, results indicated that prompts supported pre-service teachers in integrating domain-specific knowledge from multiple documents in their mental models. However, the automated structural and semantic measures did not support previous findings on the efficacy of argument tasks for knowledge integration. The findings and limitations are discussed, and conclusions are drawn for future research and for integrative learning environments in pre-service teacher education.

Keywords

Mental models Knowledge integration Assessment Knowledge representation Pre-service teacher education Teacher knowledge 

Notes

Acknowledgements

The model-based analyses and results presented in this article are based on data collected but not reported by Lehmann et al. (2019).

Funding

This research was supported in the course of the University of Bremen’s future concept by the Excellence Initiative of the German federal and state governments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ball, D. L. (2000). Bridging practices. Intertwining content and pedagogy in teaching and learning to teach. Journal of Teacher Education, 51(3), 241–247.  https://doi.org/10.1177/0022487100051003013.Google Scholar
  2. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. What makes it special? Journal of Teacher Education, 59(5), 389–407.  https://doi.org/10.1177/0022487108324554.Google Scholar
  3. Bannert, M. (2009). Promoting self-regulated learning through prompts. Zeitschrift für Pädagogische Psychologie, 23(2), 139–145.  https://doi.org/10.1024/1010-0652.23.2.139.Google Scholar
  4. Barry, D., Bender, N., Breuer, K., & Ifenthaler, D. (2014). Shared cognitions in a field of informal learning. Knowledge maps towards money management of young adults. In D. Ifenthaler & R. Hanewald (Eds.), Digital knowledge maps in education. Technology enhanced support for teachers and learners (pp. 355–370). New York: Springer.Google Scholar
  5. Baumert, J., & Kunter, M. (2013). Professionelle Kompetenz von Lehrkräften [Professional competence of teachers]. In I. Gogolin, H. Kuper, H. H. Krüger, & J. Baumert (Eds.), Stichwort: Zeitschrift für Erziehungswissenschaft (pp. 277–337). Wiesbaden: Springer.  https://doi.org/10.1007/978-3-658-00908-3_13.Google Scholar
  6. Berliner, D. C. (2001). Learning about and learning from expert teachers. Educational Research, 35(5), 463–482.  https://doi.org/10.1016/S0883-0355(02)00004-6.Google Scholar
  7. Bråten, I., & Strømsø, H. I. (2009). Effects of task instruction and personal epistemology on the understanding of multiple texts about climate change. Discourse Processes, 47(1), 1–37.  https://doi.org/10.1080/01638530902959646.Google Scholar
  8. Bromme, R. (2014). Der Lehrer als Experte. Zur Psychologie des professionellen Wissens [The teacher as an expert. On the psychology of professional knowledge]. Münster: Waxmann Verlag.Google Scholar
  9. Bruner, J. S. (1964). The course of cognitive growth. American Psychologist, 19(1), 1–15.Google Scholar
  10. Brunner, E. (2014). Mathematisches Argumentieren, Begründen und Beweisen. Grundlagen, Befunde und Konzepte [Mathematical reasoning, justifying, and proving. Basics, findings, and concepts]. Berlin: Springer Spektrum.Google Scholar
  11. Chi, M. T. H., de Leeuw, N., Chiu, M.-H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18(3), 439–477.  https://doi.org/10.1207/s15516709cog1803_3.Google Scholar
  12. Clariana, R. B. (2010). Deriving individual and group knowledge structure from network diagrams and from essays. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 117–130). New York: Springer.Google Scholar
  13. Darling-Hammond, L. (2006). Constructing 21st-Century teacher education. Journal of Teacher Education, 57(3), 300–314.  https://doi.org/10.1177/0022487105285962.Google Scholar
  14. Davis, E. (1990). Representations of commonsense knowledge. San Mateo: Morgan Kaufmann.Google Scholar
  15. Frazier, L. (1999). On sentence interpretation. Dordrecht: Kluwer.Google Scholar
  16. Gil, L., Bråten, I., Vidal-Abarca, E., & Strømsø, H. I. (2010). Summary versus argument tasks when working with multiple documents: Which is better for whom? Contemporary Educational Psychology, 35(3), 157–173.  https://doi.org/10.1016/j.cedpsych.2009.11.002.Google Scholar
  17. Gogus, A. (2012). Evaluation of mental models: Using Highly Interactive Model-based Assessment Tools and Technologies (HIMATT) in mathematics domain. Technology, Instruction, Cognition and Learning, 9(1), 31–50.Google Scholar
  18. Gogus, A. (2013). Evaluating mental models in mathematics: A comparison of methods. Educational Technology Research and Development, 61(2), 171–195.  https://doi.org/10.1007/s11423-012-9281-2.Google Scholar
  19. Grieser, D. (2015). Analysis I. Wiesbaden: Springer.Google Scholar
  20. Halford, G. S., Wilson, W. H., & Phillips, S. (2010). Relational knowledge: The foundation of higher cognition. Trends in Cognitive Sciences, 14(11), 497–505.  https://doi.org/10.1016/j.tics.2010.08.005.Google Scholar
  21. Harr, N., Eichler, A., & Renkl, A. (2014). Integrating pedagogical content knowledge and pedagogical/psychological knowledge in mathematics. Frontiers in Psychology, 5, 1–10.  https://doi.org/10.3389/fpsyg.2014.00924.Google Scholar
  22. Harr, N., Eichler, A., & Renkl, A. (2015). Integrated learning: Ways of fostering the applicability of teachers’ pedagogical and psychological knowledge. Frontiers in Psychology, 6, 1–16.  https://doi.org/10.3389/fpsyg.2015.00738.Google Scholar
  23. Hashweh, M. Z. (1987). Effects of subject-matter knowledge in the teaching of biology and physics. Teaching & Teacher Education, 3(2), 109–120.  https://doi.org/10.1016/0742-051X(87)90012-6.Google Scholar
  24. Hashweh, M. Z. (2005). Teacher pedagogical constructions: A reconfiguration of pedagogical content knowledge. Teachers and Teaching: Theory and Practice, 11(3), 273–292.  https://doi.org/10.1080/13450600500105502.Google Scholar
  25. Ifenthaler, D. (2010). Relational, structural, and semantic analysis of graphical representations and concept maps. Educational Technology Research and Development, 58(1), 81–97.  https://doi.org/10.1007/s11423-008-9087-4.Google Scholar
  26. Ifenthaler, D. (2011). Identifying cross-domain distinguishing features of cognitive structures. Educational Technology Research and Development, 59(6), 817–840.  https://doi.org/10.1007/s11423-011-9207-4.Google Scholar
  27. Ifenthaler, D. (2012). Determining the effectiveness of prompts for self-regulated learning in problem-solving scenarios. Journal of Educational Technology & Society, 15(1), 38–52.Google Scholar
  28. Ifenthaler, D., & Pirnay-Dummer, P. (2011). States and processes of learning communities. Engaging students in meaningful reflection and learning. In B. White, I. King, & P. Tsang (Eds.), Social media tools and platforms in learning environments (pp. 81–94). Berlin: Springer.  https://doi.org/10.1007/978-3-642-20392-3.Google Scholar
  29. Ifenthaler, D., & Pirnay-Dummer, P. (2014). Model-based tools for knowledge assessment. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (4th ed., pp. 289–301). New York: Springer.  https://doi.org/10.1007/978-1-4614-3185-5.Google Scholar
  30. Janssen, N., & Lazonder, A. W. (2016). Supporting pre-service teachers in designing technology-infused lesson plans. Journal of Computer Assisted Learning, 32(5), 456–467.  https://doi.org/10.1111/jcal.12146.Google Scholar
  31. Johnson, T. E., Ifenthaler, D., Pirnay-Dummer, P., & Spector, J. M. (2009). Using concept maps to assess individuals and team in collaborative learning environments. In P. L. Torres & R. C. V. Marriott (Eds.), Handbook of research on collaborative learning using concept mapping (pp. 358–381). Hershey, PA: Information Science Publishing.Google Scholar
  32. Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference and consciousness. Boston, MA: Harvard University Press.Google Scholar
  33. Kintsch, W. (1974). The representation of meaning in memory. New York: Erlbaum.Google Scholar
  34. Kopainsky, B., Pirnay-Dummer, P., & Alessi, S. M. (2010). Automated assessment of learners’ understanding in complex dynamic systems. In Proceedings of the 28th international conference of the system dynamics society, Seoul.Google Scholar
  35. Kopp, K. J. (2013). Selecting and using information from multiple documents for argumentation. Doctoral dissertation. Northern Illinois University. Ann Arbor, MI: ProQuest LLC.Google Scholar
  36. Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, J., et al. (2008). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100(3), 716–725.  https://doi.org/10.1037/0022-0663.100.3.716.Google Scholar
  37. Lachner, A., & Pirnay-Dummer, P. (2010). Model-based knowledge mapping—A new approach for the automated graphical representation of organizational knowledge. In J. M. Spector, D. Ifenthaler, P. Isaias, Kinshuk, & D. G. Sampson (Eds.), Learning and instruction in the digital age: Making a difference through cognitive approaches, technology-facilitated collaboration and assessment, and personalized communications (pp. 69–85). New York: Springer.Google Scholar
  38. Le Ny, J.-F. (1993). Wie kann man mentale Repräsentationen repräsentieren? [How to represent mental representations?]. In J. Engelkamp & T. Pechmann (Eds.), Mentale Repräsentation [Mental representation] (pp. 31–39). Bern: Huber.Google Scholar
  39. Lee, J., & Spector, J. M. (2012). Effects of model-centered instruction on effectiveness, efficiency, and engagement with ill-structured problem solving. Instructional Science, 40(3), 537–557.  https://doi.org/10.1007/s11251-011-9189-y.Google Scholar
  40. Lee, J., & Turner, J. E. (2017). Extensive knowledge integration strategies in pre-service teachers: The role of perceived instrumentality, motivation, and self-regulation. Educational Studies.  https://doi.org/10.1080/03055698.2017.1382327.Google Scholar
  41. Leech, G. N. (1983). Principles of pragmatics. New York: Routledge.Google Scholar
  42. Lehmann, T., Hähnlein, I., & Ifenthaler, D. (2014). Cognitive, metacognitive and motivational perspectives on preflection in self-regulated online learning. Computers in Human Behavior, 32, 313–323.  https://doi.org/10.1016/j.chb.2013.07.051.Google Scholar
  43. Lehmann, T., & Pirnay-Dummer, P. (2014). Expertise divergence and convergence development in complex problem-based learning scenarios. Poster presentation at the annual meeting of the American Educational Research Association (AERA), Philadelphia, PA, USA.Google Scholar
  44. Lehmann, T., Rott, B., & Schmidt-Borcherding, F. (2019). Promoting pre-service teachers’ integration of professional knowledge: Effects of writing tasks and prompts on learning from multiple documents. Instructional Science, 47(1), 99–126.  https://doi.org/10.1007/s11251-018-9472-2.Google Scholar
  45. Lewin, K. (1922). Das Problem der Wissensmessung und das Grundgesetz der Assoziation. Teil 1 [The problem of knowledge assessment and the basic law of association]. Psychologische Forschung, 1, 191–302.  https://doi.org/10.1007/BF00410391.Google Scholar
  46. Linn, M. C. (2000). Designing the knowledge integration environment. International Journal of Science Education, 22, 781–796.  https://doi.org/10.1080/095006900412275.Google Scholar
  47. List, A., & Alexander, P. A. (2017). Analyzing and integrating models of multiple text comprehension. Educational Psychologist, 52(3), 143–147.  https://doi.org/10.1080/00461520.2017.1328309.Google Scholar
  48. Livingston, C., & Borko, H. (1990). High school mathematics review lessons: Expert-novice distinctions. Journal of Research in Mathematics Education, 21(5), 372–387.  https://doi.org/10.2307/749395.Google Scholar
  49. McCrudden, M. T., & Schraw, G. (2007). Relevance and goal-focusing in text processing. Educational Psychology Review, 19(2), 113–139.  https://doi.org/10.1007/s10648-006-9010-7.Google Scholar
  50. McCrudden, M. T., & Schraw, G. (2010). The effects of relevance instructions and verbal ability on text processing. The Journal of Experimental Education, 78(1), 96–117.  https://doi.org/10.1080/00220970903224529.Google Scholar
  51. McKoon, G., & Ratcliff, R. (1992). Inference during reading. Psychological Review, 99(3), 440–466.  https://doi.org/10.1037/0033-295X.99.3.440.Google Scholar
  52. McNamara, T. P. (1992). Priming and constraints it places on theories of memory and retrieval. Psychological Review, 99(4), 650–662.  https://doi.org/10.1037/0033-295X.99.4.650.Google Scholar
  53. McNamara, T. P. (1994). Priming and theories of memory: A reply to Ratcliff and McKoon. Psychological Review, 101(1), 185–187.  https://doi.org/10.1037/0033-295X.101.1.185.Google Scholar
  54. McNamara, T. P., Miller, D. L., & Bransford, J. D. (1991). Mental models and reading comprehension. In R. Barr, M. Kamil, P. Mosenthal, & P. Pearson (Eds.), Handbook of reading research (Vol. 2, pp. 490–511). London: Longman.Google Scholar
  55. Perfetti, C. A., Rouet, J.-F., & Britt, M. A. (1999). Toward a theory of documents representation. In H. van Oostendorp & S. R. Goldman (Eds.), The construction of mental representations during reading (pp. 99–122). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  56. Pirnay-Dummer, P. (2014). Gainfully guided misconception. How automatically generated knowledge maps can help companies within and across their projects. In D. Ifenthaler & R. Hanewald (Eds.), Digital knowledge maps in higher education. Technology-enhanced support for teachers and learners (pp. 253–274). New York: Springer.  https://doi.org/10.1007/978-1-4614-3178-7_14.Google Scholar
  57. Pirnay-Dummer, P. (2015). Linguistic analysis tools. In C. A. MacArthur, S. Graham, & J. Fitzgerald (Eds.), Handbook of writing research (pp. 427–442). New York: Guilford Publications.Google Scholar
  58. Pirnay-Dummer, P., & Ifenthaler, D. (2010). Automated knowledge visualization and assessment. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 77–115). New York: Springer.  https://doi.org/10.1007/978-1-4419-5662-0_6.Google Scholar
  59. Pirnay-Dummer, P., Ifenthaler, D., & Spector, J. M. (2010). Highly integrated model assessment technology and tools. Educational Technology Research and Development, 58(1), 3–18.  https://doi.org/10.1007/s11423-009-9119-8.Google Scholar
  60. Pirnay-Dummer, P., & Spector, J. M. (2008). Language, association, and model re-representation. How features of language and human association can be utilized for automated knowledge assessment. Paper presented at the annual meeting of the AERA, New York, NY, USA.Google Scholar
  61. Pollio, H. R. (1966). The structural basis of word association behavior. The Hague: Mouton.Google Scholar
  62. Ratcliff, R., & McKoon, G. (1994). Retrieving information from memory: Spreading-activation theories versus compound-cue theories. Psychological Review, 101(1), 177–184.  https://doi.org/10.1037/0033-295X.101.1.177.Google Scholar
  63. Reigeluth, C. M., & Stein, F. S. (1983). The elaboration theory of instruction. In C. M. Reigeluth (Ed.), Instructional design theories and models: An overview of their current status (pp. 335–382). Hillsdale, NJ: Erlbaum.Google Scholar
  64. Renkl, A. (2015). Wissenserwerb [Knowledge acquisition]. In E. Wild & J. Möller (Eds.), Pädagogische Psychologie [Educational psychology] (pp. 3–24). Berlin: Springer.Google Scholar
  65. Renkl, A., Mandl, H., & Gruber, H. (1996). Inert knowledge: Analyses and remedies. Educational Psychologist, 31(2), 115–121.  https://doi.org/10.1207/s15326985ep3102_3.Google Scholar
  66. Rouet, J. F., & Britt, M. A. (2011). Relevance processes in multiple documents comprehension. In M. T. McCrudden, J. P. Magliano, & G. Schraw (Eds.), Text relevance and learning from text (pp. 19–52). Charlotte: Information Age Publishing.Google Scholar
  67. Rouet, J.-F., Britt, M. A., & Durik, A. M. (2017). RESOLV: Readers’ representation of reading contexts and tasks. Educational Psychologist, 52(3), 200–215.  https://doi.org/10.1080/00461520.2017.1329015.Google Scholar
  68. Russel, W. A., & Jenkins, J. J. (1954). The complete Minnesota norms for responses to 100 words from the Kent-Rosanoff word association test. Technological Report 11, University of Minnesota.Google Scholar
  69. Scardamalia, M., & Bereiter, C. (1987). The psychology of written composition. New York: Routledge.Google Scholar
  70. Scardamalia, M., & Bereiter, C. (1991). Literate expertise. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise. Prospects and limits (pp. 172–194). Cambridge: University Press.Google Scholar
  71. Seel, N. M. (1991). Weltwissen und mentale Modelle [World knowledge and mental models]. Göttingen: Hogrefe.Google Scholar
  72. Seel, A. (1997). Von der Unterrichtsplanung zum konkreten Lehrerhandeln [From lesson planning to practical teaching]. Unterrichtswissenschaft, 25(3), 257–273.Google Scholar
  73. Seel, N. M. (1999). Educational semiotics: School learning reconsidered. Journal of Structural Learning & Intelligent Systems, 14(1), 11–28.Google Scholar
  74. Seufert, T., Zander, S., & Brünken, R. (2007). Das Generieren von Bildern als Verstehenshilfe beim Lernen aus Texten [Generating pictures as aid for comprehension in learning from texts]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 39(1), 33–42.  https://doi.org/10.1026/0049-8637.39.1.33.Google Scholar
  75. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.  https://doi.org/10.3102/0013189X015002004.Google Scholar
  76. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.  https://doi.org/10.3102/0013189X015002004.Google Scholar
  77. Shute, V. J., Masduki, I., Donmez, O., Kim, Y. J., Dennen, V. P., Jeong, A. C., et al. (2010). Assessing key competencies within game environments. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 281–309). New York: Springer.Google Scholar
  78. Spector, J. M., Dennen, V. P., & Koszalka, T. A. (2005). Individual and collaborative construction of causal concept maps: An online technique for learning and assessment. In G. Chiazzese, M. Allegra, A. Chifari, & S. Ottaviano (Eds.), Methods and technologies for learning (pp. 223–227). Southampton: WIT-Press.Google Scholar
  79. Spector, J. M., & Koszalka, T. A. (2004). The DEEP methodology for assessing learning in complex domains (Final report the National Science Foundation Evaluative Research and Evaluation Capacity Building). Syracuse, NY: Syracuse University.Google Scholar
  80. Stachowiak, F. J. (1979). Zur semantischen Struktur des subjektiven Lexikons [On the semantic structure of the subjective lexicon]. München: Wilhelm Fink Verlag.Google Scholar
  81. Tynjälä, P., Mason, L., & Lonka, K. (Eds.). (2001). Writing as a learning tool: Integrating theory and practice. Dodrecht: Kluwer Academic Publishers.  https://doi.org/10.1007/978-94-010-0740-5.Google Scholar
  82. van Dijk, T. A. (1977). Text and context: Explorations in the semantics and pragmatics of discourse. New York: Longman.Google Scholar
  83. van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: Academic Press.Google Scholar
  84. Verloop, N., Van Driel, J., & Meijer, P. (2001). Teacher knowledge and the knowledge base of teaching. International Journal of Educational Research, 35(5), 441–461.  https://doi.org/10.1016/S0883-0355(02)00003-4.Google Scholar
  85. Voss, T., Kunter, M., & Baumert, J. (2011). Assessing teacher candidates‘general pedagogical/psychological knowledge: Test construction and validation. Journal of Educational Psychology, 103(4), 952–969.  https://doi.org/10.1037/a0025125.Google Scholar
  86. Wäschle, K., Lehmann, T., Brauch, N., & Nückles, M. (2015). Prompted journal writing supports preservice history teachers in drawing on multiple knowledge domains for designing learning tasks. Peabody Journal of Education, 90(4), 546–559.  https://doi.org/10.1080/0161956X.2015.1068084.Google Scholar
  87. Weinert, F. E., Schrader, F.-W., & Helmke, A. (1990). Educational expertise: Closing the gap between educational research and classroom practice. School Psychology International, 11(3), 163–180.  https://doi.org/10.1177/0143034390113002.Google Scholar
  88. Wiley, J., & Voss, J. F. (1996). The effects of ‘playing historian’ on learning in history. Applied Cognitive Psychology, 10(7), 63–72.  https://doi.org/10.1002/(SICI)1099-0720(199611)10:7<63::AID-ACP438>3.0.CO;2-5.Google Scholar
  89. Wiley, J., & Voss, J. F. (1999). Constructing arguments from multiple sources: Tasks that promote understanding and not just memory from text. Journal of Educational Psychology, 91(2), 301–311.  https://doi.org/10.1037/0022-0663.91.2.301.Google Scholar

Copyright information

© Association for Educational Communications and Technology 2019

Authors and Affiliations

  1. 1.Research Unit: Learning, Instruction, and Educational Psychology, Faculty of Pedagogical and Educational SciencesUniversity of BremenBremenGermany
  2. 2.Department of Educational Psychology, Faculty of PedagogyMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations