Advertisement

Educational Technology Research and Development

, Volume 60, Issue 5, pp 753–768 | Cite as

Role of dual task design when measuring cognitive load during multimedia learning

  • Cornelia Schoor
  • Maria Bannert
  • Roland Brünken
Research Article

Abstract

This study assessed the role different kinds of secondary tasks play for researching the modality effect of cognitive load theory. Ninety-six university students worked with a computer-based training program for approximately 13 min and had to fulfill an additional secondary task. In a 2 × 2 factorial design, modality of information presentation (within factor) and design of secondary task (between factor) were varied. Students of both experimental groups learned with visual-only and audiovisual information presentation. The secondary task consisted of monitoring an object either displayed spatially contiguous (monitoring the screen background color, N = 46) or spatially non-contiguous (monitoring a letter color in the upper part of the screen, N = 50). Reaction times on this secondary task were used to measure cognitive load. Results show that the modality effect only appears with the spatially non-contiguous task but not with the spatially contiguous task. We interpret this effect as due to only partial utilization of working memory capacity by the combination of primary task and spatially contiguous secondary task. The results highlight the importance of an appropriate secondary task design when investigating the modality effect but also not to overgeneralize multimedia design guidelines.

Keywords

Multimedia learning Cognitive load Dual task methodology Modality effect 

Notes

Acknowledgments

This research was funded by the German Research Foundation (DFG BA2044/5-1).

References

  1. Ayres, P. (2001). Systematic mathematical errors and cognitive load. Contemporary Educational Psychology, 26, 227–248.CrossRefGoogle Scholar
  2. Ayres, P., & Paas, F. (2009). Interdisciplinary perspectives inspiring a new generation of cognitive load research [Special issue]. Educational Psychology Review, 21(1), 1–9.Google Scholar
  3. Ayres, P., & Van Gog, T. (2009). State of the art research into cognitive load theory [Special issue]. Computers in Human Behavior, 25(2), 253–392.Google Scholar
  4. Baddeley, A. (2001). Is working memory still working? American Psychologist, 56(11), 851–864.CrossRefGoogle Scholar
  5. Baddeley, A., & Hitch, G. (1974). Working memory. In G. Bower (Ed.), Recent advances in learning and motivation (Vol. 8, pp. 47–89). New York: Academic Press.Google Scholar
  6. Bannert, M. (2002). Managing cognitive load. Recent trends in cognitive load theory. Learning and Instruction, 12, 139–146.CrossRefGoogle Scholar
  7. Bleckley, M., Durso, F., Crutchfield, J., Engle, R., & Khanna, M. (2003). Individual differences in working memory capacity predict visual attention allocation. Psychonomic Bulletin and Review, 10(4), 884–889.CrossRefGoogle Scholar
  8. Boynton, R. M., & Kambe, N. (1980). Chromatic difference steps of moderate size measured along theoretically critical axes. Color Research and Application, 5(1), 13–23.CrossRefGoogle Scholar
  9. Brünken, R., & Leutner, D. (2001). Aufmerksamkeitsverteilung oder Aufmerksamkeitsfokussierung? Empirische Ergebnisse zur „Split-Attention-Hypothese“beim Lernen mit Multimedia [Attention splitting or attention focussing? Empirical results concerning the „split-attention hypothesis“in learning with multimedia]. Unterrichtswissenschaft, 29(4), 357–366.Google Scholar
  10. Brünken, R., Plass, J., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53–61.CrossRefGoogle Scholar
  11. Brünken, R., Plass, J., & Leutner, D. (2004). Assessment of cognitive load in multimedia learning with dual-task methodology: Auditory load and modality effects. Instructional Science, 32, 115–132.CrossRefGoogle Scholar
  12. Brünken, R., Steinbacher, S., Plass, J., & Leutner, D. (2002). Assessment of cognitive load in multimedia learning using dual-task methodology. Experimental Psychology, 49(2), 109–119.CrossRefGoogle Scholar
  13. Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332.CrossRefGoogle Scholar
  14. Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. British Journal of Educational Psychology, 62, 233–246.CrossRefGoogle Scholar
  15. Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program. Applied Cognitive Psychology, 10(2), 151–170.CrossRefGoogle Scholar
  16. De Leeuw, K., & Mayer, R. (2008). A comparison of three measures of cognitive load: evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology, 100(1), 223–234.CrossRefGoogle Scholar
  17. Fisk, A. D., Derrick, W. L., & Schneider, W. (1986). A methodological assessment and evaluation of dual-task paradigms. Current Psychological Research and Reviews, 5(4), 315–327.CrossRefGoogle Scholar
  18. Fletcher, J. D., & Tobias, S. (2005). The multimedia principle. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 117–133). New York: Cambridge University Press.CrossRefGoogle Scholar
  19. Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15, 313–331.CrossRefGoogle Scholar
  20. Kane, M., & Engle, R. (2000). Working-memory capacity, proactive interference, and divided attention: Limits on long-term memory retrieval. Journal of Experimental Psychology. Learning, Memory, and Cognition, 26(2), 336–358.CrossRefGoogle Scholar
  21. Low, R., & Sweller, J. (2005). The modality principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 147–158). New York: Cambridge University Press.CrossRefGoogle Scholar
  22. Madrid, I., Van Oostendorp, H., & Melguizo, M. (2009). The effects of the number of links and navigation support on cognitive load and learning with hypertext: The mediating role of reading order. Computers in Human Behavior, 25, 66–75.CrossRefGoogle Scholar
  23. Marcus, N., Cooper, M., & Sweller, J. (1996). Understanding instructions. Journal of Educational Psychology, 88(1), 49–63.CrossRefGoogle Scholar
  24. Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.CrossRefGoogle Scholar
  25. Mayer, R. E. (2005). The Cambridge handbook of multimedia learning. New York: Cambridge University Press.CrossRefGoogle Scholar
  26. Moreno, R., & Mayer, R. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of Educational Psychology, 91(2), 358–368.CrossRefGoogle Scholar
  27. Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63–71.CrossRefGoogle Scholar
  28. Renkl, A., Gruber, H., Weber, S., Lerche, T., & Schweizer, K. (2003). Cognitive Load beim Lernen aus Lösungsbeispielen [Cognitive load during learning from worked-out examples]. Zeitschrift für Pädagogische Psychologie, 17(2), 93–101.CrossRefGoogle Scholar
  29. Rummer, R., Schweppe, J., Fürstenberg, A., Seufert, T., & Brünken, R. (2010). What causes the modality effect in multimedia learning? Testing a specification of the modality assumption. Applied Cognitive Psychology, 24(2), 164–176.CrossRefGoogle Scholar
  30. Rummer, R., Schweppe, J., Scheiter, K., & Gerjets, P. (2008). Lernen mit Multimedia: Die kognitiven Grundlagen des Modalitätseffekts [Multimedia learning and the cognitive basis of the modality effect]. Psychologische Rundschau, 59(2), 98–107.Google Scholar
  31. Schnotz, W., & Kürschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19(4), 469–508.CrossRefGoogle Scholar
  32. Schoor, C., Bannert, M., & Jahn, V. (2011). Methodological constraints for detecting the modality effect. Electronic Journal of Research in Educational Psychology, 9(3), 1183–1196.Google Scholar
  33. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285.CrossRefGoogle Scholar
  34. Sweller, J. (2005). The redundancy principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 159–167). New York: Cambridge University Press.CrossRefGoogle Scholar
  35. Swets, J., Tanner, W., & Birdsall, T. (1961). Decision processes in perception. Psychological Review, 68(5), 301–340.CrossRefGoogle Scholar
  36. Tabbers, H., Martens, R., & Van Merrienboer, J. (2004). Multimedia instructions and cognitive load theory: Effects of modality and cueing. British Journal of Educational Psychology, 74, 71–81.CrossRefGoogle Scholar
  37. Verhoeven, L., Schnotz, W., & Paas, F. (2009). Cognitive load in interactive knowledge construction [Special issue]. Learning and Instruction, 19(5), 369–375.Google Scholar
  38. Wickens, C. (1991). Processing resources and attention. In D. Damos (Ed.), Multiple-task performance (pp. 3–34). London: Taylor and Francis.Google Scholar
  39. Wickens, C. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159–177.CrossRefGoogle Scholar
  40. Wright, W. (1941). The sensitivity of the eye to small colour differences. The proceedings of the physical society, 53(2), 93–112.CrossRefGoogle Scholar

Copyright information

© Association for Educational Communications and Technology 2012

Authors and Affiliations

  • Cornelia Schoor
    • 1
  • Maria Bannert
    • 2
  • Roland Brünken
    • 3
  1. 1.Psychology of Learning and InstructionTU DresdenDresdenGermany
  2. 2.Educational MediaUniversity of WuerzburgWuerzburgGermany
  3. 3.Department of EducationSaarland UniversitySaarbrückenGermany

Personalised recommendations