Advertisement

Arguing to learn and learning to argue: design justifications and guidelines

  • David H. Jonassen
  • Bosung Kim
Review Article

Abstract

Meaningful learning requires deep engagement with ideas. Deep engagement is supported by the critical thinking skill of argumentation. Learning to argue represents an important way of thinking that facilitates conceptual change and is essential for problem solving. In order to appropriately apply argumentation practices to learning, we first discuss reasons for using argumentation in learning environments or instruction. Next, we describe the skills of argumentation along with difficulties that learners experience when trying to argue. Following a brief description of the kinds of argumentation to persuade an audience of the validity of your position or solution (rhetorical) or to attempt to resolve differences in opinions or solutions (dialectical), we describe methods and guidelines for eliciting arguments from students. We conclude with processes for assessing the quality of student-generated arguments.

Keywords

Argumentation Problem solving Computer-supported collaborative argumentation 

References

  1. Anderson, R. C., Nguyen-Jahiel, K., McNurlin, B., Archodidou, A., Kim, S. Y., Reznitskaya, A., et al. (2001). The snowball phenomenon: Spread of ways of talking and ways of thinking across groups of children. Cognition and Instruction, 19(1), 1–46.CrossRefGoogle Scholar
  2. Andriessen, J., Baker, M., & Suthers, D. (2003). Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments. Dordrecht, NL: Kluwer.Google Scholar
  3. Asterhan, C. S. C., & Schwarz, B. B. (2007). The effects of monological and dialogical argumentation on concept learning in evolutionary theory. Journal of Educational Psychology, 99(3), 626–639.CrossRefGoogle Scholar
  4. Baker, M. (1999). Argumentation and constructive interaction. In J. Andriessen & P. Coirier (Eds.), Foundations of argumentative text processing (pp. 179–202). Amsterdam: Amsterdam University Press.Google Scholar
  5. Barth, E. M., & Krabbe, E. C. W. (1982). From axiom to dialogue: A philosophical study of logics and argumentation. Berlin, New York: W. de Gruyter.Google Scholar
  6. Blair, J. A., & Johnson, R. H. (1987). Argumentation as dialectical. Argumentation, 1(1), 41–56.CrossRefGoogle Scholar
  7. Buckingham Shum, S. J., MacLean, A., Bellotti, V., & Hammond, N. V. (1997). Graphical argumentation and design cognition. Human-Computer Interaction, 12(3), 267–300.CrossRefGoogle Scholar
  8. Chinn, C. A., & Anderson, R. C. (1998). The structure of discussions that promote reasoning. Teachers College Record, 100(2), 315–368.Google Scholar
  9. Chinn, C. A., O’Donnell, A. M., & Jinks, T. S. (2000). The structure of discourse in collaborative learning. Journal of Experimental Education, 69(1), 77–98.CrossRefGoogle Scholar
  10. Cho, K. L., & Jonassen, D. H. (2003). The effects of argumentation scaffolds on argumentation and problem solving. Educational Technology Research and Development, 50(3), 5–22.CrossRefGoogle Scholar
  11. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287–312.CrossRefGoogle Scholar
  12. Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39–72.CrossRefGoogle Scholar
  13. Felton, M., & Kuhn, D. (2001). The development of argumentative discourse skill. Discourse Processes, 32(2&3), 135–153.CrossRefGoogle Scholar
  14. Hong, N. S., Jonassen, D. H., & McGee, S. (2003). Predictors of well-structured and ill-structured problem solving in an astronomy simulation. Journal of Research in Science Teaching, 40(1), 6–33.CrossRefGoogle Scholar
  15. Inch, E. S., & Warnick, B. (2002). Critical thinking and communication: The use of reason in argument (4th ed.). Needham Heights: Allyn and Bacon.Google Scholar
  16. Jonassen, D. H. (1997). Instructional design model for well-structured and ill-structured problem-solving learning outcomes. Educational Technology Research and Development, 45(1), 65–95.CrossRefGoogle Scholar
  17. Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63–85.CrossRefGoogle Scholar
  18. Jonassen, D. H. (2004). Learning to solve problems: An instructional design guide. San Francisco, CA: Pfeiffer/Jossey-Bass.Google Scholar
  19. Jonassen, D. H. (2007). What makes scientific problems difficult? In D. H. Jonassen (Ed.), Learning to solve complex, scientific problems (pp. 3–23). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  20. Jonassen, D. H. (in press). Assembling and analyzing the building blocks of problem-based learning. In K. H. Silber & W. R. Foshay (Eds.), Handbook of training and improving workplace performance. San Francisco, CA: Wiley/Pfeiffer.Google Scholar
  21. Jonassen, D. H., Cho, Y. H., Kwon, K., Henry, H., Easter, M., Shen, D., et al. (2009). Evaluating vs. constructing arguments. Journal of Engineering Education, 98(3), 235–254.Google Scholar
  22. Keefer, M. W., Zeitz, C. M., & Resnick, L. B. (2000). Judging the quality of peer-led student dialogues. Cognition and Instruction, 18(1), 53–81.CrossRefGoogle Scholar
  23. Kirschner, P. A., Buckingham-Shum, S. J., & Carr, C. S. (2003). Visualizing argumentation: Software tools for collaborative and educational sense-making. London: Springer.Google Scholar
  24. Kuhn, D. (1991). The skills of argument. Cambridge, UK: Cambridge University Press.Google Scholar
  25. Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62(2), 155–178.Google Scholar
  26. Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319–337.CrossRefGoogle Scholar
  27. Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentative reasoning. Cognition and Instruction, 15(3), 287–315.CrossRefGoogle Scholar
  28. Leitão, S. (2001, September). Analyzing changes in view during argumentation: A quest for method. Forum: Qualitative Social Research, 2(3), Article 12. Retrieved August 30, 2008, from http://www.qualitative-research.net/index.php/fqs/article/view/907/1982.
  29. Leitão, S. (2003). Evaluating and selecting counterarguments. Written Communication, 20(3), 269–306.CrossRefGoogle Scholar
  30. Means, M. L., & Voss, J. F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cognition and Instruction, 14(2), 139–178.CrossRefGoogle Scholar
  31. Munneke, L., Andriessen, J., Kanselaar, G., & Kirschner, P. (2007). Supporting interactive argumentation: Influence of representational tools on discussing a wicked problem. Computers in Human Behavior, 23(3), 1072–1088.CrossRefGoogle Scholar
  32. Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21, 553–576.CrossRefGoogle Scholar
  33. Nussbaum, E. M., Hartley, K., Sinatra, G. M., Reynolds, R. E., & Bendixen, L. D. (2004). Personality interactions and scaffolding in on-line discussions. Journal of Educational Computing Research, 30(1&2), 113–137.CrossRefGoogle Scholar
  34. Nussbaum, E. M., & Kardash, C. M. (2005). The effects of goal instructions and text on the generation of counterarguments during writing. Journal of Educational Psychology, 97(2), 157–169.CrossRefGoogle Scholar
  35. Nussbaum, E. M., & Schraw, G. (2007). Promoting argument-counterargument integration in students writing. Journal of Experimental Education, 76(1), 59–92.CrossRefGoogle Scholar
  36. Nussbaum, E. M., & Sinatra, G. M. (2003). Argument and conceptual engagement. Contemporary Educational Psychology, 28(3), 384–395.CrossRefGoogle Scholar
  37. Oh, S., & Jonassen, D. H. (2007). Scaffolding argumentation during problem solving. Journal of Computer Assisted Learning, 23(2), 95–110.CrossRefGoogle Scholar
  38. Perelman, C., & Olbrechts-Tyteca, L. (1969). The new rhetoric: A treatise on argumentation. In P. Wilkinson & J. Weaver (Eds.), Nortre Dame. London: University of Notre Dame Press.Google Scholar
  39. Perkins, D. N., Farady, M., & Bushey, B. (1991). Everyday reasoning and the roots of intelligence. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education (pp. 83–106). Hillsdale, NJ: Erlbaum.Google Scholar
  40. Perry, W. G. (1970). Forms of intellectual and ethical development in the college years: A scheme. New York: Holt, Rinehart and Winston.Google Scholar
  41. Popper, K. (1999). All life is problem solving. London: Routledge.Google Scholar
  42. Resnick, L. B., Salmon, M., Zeitz, C. M., Wathen, S. H., & Holowchak, M. (1993). Reasoning in conversation. Cognition and Instruction, 11(3/4), 347–364.Google Scholar
  43. Reznitskya, A., Anderson, R. C., McNurlin, B., Nguyen-Jahiel, K., Archodidou, A., & Kim, S. Y. (2001). Influence of oral discussion on written argumentation. Discourse Processes, 32(2&3), 155–175.CrossRefGoogle Scholar
  44. Shin, N., Jonassen, D. H., & McGee, S. (2003). Predictors of well-structured and ill-structured problem solving in an astronomy simulation. Journal of Research in Science Teaching, 41(3), 6–33.CrossRefGoogle Scholar
  45. Siegal, H. (1995). Why should educators care about argumentation? Informal Logic, 17(2), 159–176.Google Scholar
  46. Stein, N. L., & Bernas, R. (1999). The early emergence of argumentative knowledge and skill. In J. Andriessen & P. Corrier (Eds.), Foundations of argumentative text processing (pp. 97–116). Amsterdam: Amsterdam University Press.Google Scholar
  47. Suthers, D. (1998) Representations for scaffolding collaborative inquiry on ill-structured problems. Paper presented at the 1998 AERA Annual Meeting, San Diego, California.Google Scholar
  48. Suthers, D., & Hundhausen, C. (2003). An empirical study of the effects of representational guidance on collaborative learning. The Journal of the Learning Sciences, 12(2), 183–219.CrossRefGoogle Scholar
  49. Suthers, D., & Jones, D. (1997, August). An architecture for intelligent collaborative educational systems. Paper Presented at the 8th World Conference on Artificial Intelligence in Education (AI-Ed 97), Kobe, Japan.Google Scholar
  50. Toulmin, S. E. (1958). The uses of argument. Cambridge, England: Cambridge University Press.Google Scholar
  51. van Eemeren, F. H., & Grootendorst, R. (1992). Argumentation, communication, and fallacies: A pragma-dialectical perspective. Hillsdale, NJ: Erlbaum.Google Scholar
  52. van Eemeren, F. H., Grootendorst, R., & Henkemans, F. S. (1996). Fundamentals of argumentation theory: A handbook of historical backgrounds and contemporary developments. Mahwah, NJ: Erlbaum.Google Scholar
  53. van Eemeren, F. H., Grootendorst, R., & Kruiger, T. (1987). Handbook of argumentation theory: A critical survey of classical backgrounds and modern studies. Dordrecht, NL: Foris Publications.Google Scholar
  54. vonAufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation related to their scientific knowledge. International Journal of Science Education, 45, 101–131.Google Scholar
  55. Voss, J. F., & Means, M. L. (1991). Learning to reason via instruction in argumentation. Learning and Instruction, 1, 337–350.CrossRefGoogle Scholar
  56. Voss, J. F., Perkins, D. N., & Segal, J. W. (1991). Preface. In F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning in education. Hillsdale, NJ: Erlbaum.Google Scholar
  57. Voss, J. F., & Post, T. A. (1988). On the solving of ill-structured problems. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  58. Walton, D. N. (1992). Plausible argument in everyday conversation. Albany, NY: State University of New York Press.Google Scholar
  59. Walton, D. N. (1996). Argumentation schemes for presumptive reasoning. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  60. Wiley, J., & Voss, J. F. (1999). Constructing arguments from multiple sources: Tasks that promote understanding and not just memory for text. Journal of Educational Psychology, 91(2), 301–311.CrossRefGoogle Scholar
  61. Wineburg, S. S. (2001). Historical thinking and other unnatural acts: Charting the future of teaching the past. Philadelphia: Temple University Press.Google Scholar
  62. Zeidler, D. L. (1997). The central role of fallacious thinking in science education. Science Education, 81, 483–496.CrossRefGoogle Scholar

Copyright information

© Association for Educational Communications and Technology 2009

Authors and Affiliations

  1. 1.University of MissouriColumbiaUSA

Personalised recommendations