Relational, structural, and semantic analysis of graphical representations and concept maps

Development Article

Abstract

The demand for good instructional environments presupposes valid and reliable analytical instruments for educational research. This paper introduces the SMD Technology (Surface, Matching, Deep Structure), which measures relational, structural, and semantic levels of graphical representations and concept maps. The reliability and validity of the computer-based and automated SMD Technology was tested in three experimental studies with 106 participants. The findings indicate a high reliability and validity. The discussion focuses on the development and realization of the three levels of the SMD Technology and applications for research, learning and instruction.

Keywords

SMD technology Assessment Mental models Concept maps Knowledge representation 

References

  1. Al-Diban, S. (2002). Diagnose mentaler Modelle. Hamburg: Kovac.Google Scholar
  2. Bonato, M. (1990). Wissenstrukturierung mittels Struktur-Lege-Techniken. Eine grapentheoretische Analyse von Wissensnetzen. Frankfurt: Lang.Google Scholar
  3. Chartrand, G. (1977). Introductory graph theory. New York, NY: Dover.Google Scholar
  4. Couné, B., Hanke, U., Ifenthaler, D., & Seel, N. M. (2004). Modellkonstruktionen beim Problemlösen im Kontext entdeckenden Lernens: Eine Studie zur Implementierung theoretisch-begründeter Instruktionsprinzipien. Zweiter Bericht aus dem Forschungsprojekt „Modell-begründetes Lernen und Lehren. Multimediale Lernumgebungen als Gelegenheiten zum Nachdenken. Freiburg: Institut für Erziehungswissenschaft.Google Scholar
  5. Dummer, P., & Ifenthaler, D. (2005). Planning and assessing navigation in model-centered learning environments. Why learners often do not follow the path laid out for them. In G. Chiazzese, M. Allegra, A. Chifari, & S. Ottaviano (Eds.), Methods and technologies for learning (pp. 327–334). Southampton: WIT Press.Google Scholar
  6. Eckert, A. (2000). Die Netzwerk-Elaborierungs-Technik (NET)—Ein computerunterstütztes Verfahren zur Diagnose komplexer Wissensstrukturen. In H. Mandl & F. Fischer (Eds.), Wissen sichtbar machen—Wissensmanagement mit Mapping-Techniken (pp. 138–157). Göttingen: Hogrefe.Google Scholar
  7. Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., & Woodhull, G. (2003). GraphViz and dynagraph. Static and dynamic graph drawing tools. Florham Park, NJ: AT&T Labs.Google Scholar
  8. Hanke, U. (2006). Externale Modellbildung als Hilfe bei der Informationsverarbeitung und beim Lernen. Freiburg: FreiDok.Google Scholar
  9. Harary, F. (1974). Graphentheorie. München: Oldenbourg.Google Scholar
  10. Ifenthaler, D. (2006). Diagnose lernabhängiger Veränderung mentaler Modelle. Entwicklung der SMD-Technologie als methodologisches Verfahren zur relationalen, strukturellen und semantischen Analyse individueller Modellkonstruktionen. Freiburg: FreiDok.Google Scholar
  11. Ifenthaler, D., & Seel, N. M. (2005). The measurement of change: Learning-dependent progression of mental models. Technology, Instruction, Cognition and Learning, 2(4), 317–336.Google Scholar
  12. Ifenthaler, D., Pirnay-Dummer, P., & Seel, N. M. (2007). The role of cognitive learning strategies and intellectual abilities in mental model building processes. Technology, Instruction, Cognition and Learning, 5(4), 353–366.Google Scholar
  13. Johnson, T. E., O’Connor, D. L., Spector, J. M., Ifenthaler, D., & Pirnay-Dummer, P. (2006). Comparative study of mental model research methods: Relationships among ACSMM, SMD, MITOCAR & DEEP methodologies. In A. J. Canas & J. D. Novak (Eds.), Proceedings of the second international conference on concept mapping (pp. 87–94). San Jose, Costa Rica: Universidad de Costa Rica.Google Scholar
  14. Johnson-Laird, P. N. (1983). Mental models. Towards a cognitive science of language, inference, and consciousness. Cambridge, UK: Cambridge University Press.Google Scholar
  15. Jonassen, D. H., Reeves, T. C., Hong, N., Harvey, D., & Peters, K. (1997). Concept mapping as cognitive learning and assessment tools. Journal of Interactive Learning Research, 8(3/4), 289–308.Google Scholar
  16. Le Ny, J.-F. (1993). Wie kann man mentale Repräsentationen repräsentieren? In J. Engelkamp & T. Pechmann (Eds.), Mentale repräsentation (pp. 31–39). Bern: Huber.Google Scholar
  17. Lienert, G. A., & Raatz, U. (1994). Testaufbau und testanalyse. Weinheim: Beltz.Google Scholar
  18. Lin, D. (1998). An information-theoretic definition of similarity. International Conference on Machine Learning, Madison, WI.Google Scholar
  19. Mansfield, H., & Happs, J. (1991). Concept maps. Australian Mathematics Teacher, 47(3), 30–33.Google Scholar
  20. Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7–14). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  21. Novak, J. D. (1998). Learning, creating, and using knowledge: concept maps as facilitative tools in schools and corporations. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  22. Piaget J. (1950). La construction du réel chez l’enfant. Neuchatel: Delachaux et Niestlé S.A.Google Scholar
  23. Piaget, J. (1976). Die Äquilibration der kognitiven Strukturen. Stuttgart: Klett.Google Scholar
  24. Pirnay-Dummer, P. (2006). Expertise und Modellbildung: MITOCAR. Freiburg: FreiDok.Google Scholar
  25. Rost, J. (2005). Interpretation und Bewertung pädagogisch-psychologischer Studien. Weinheim: Beltz.Google Scholar
  26. Scandura, J. M. (1988). Role of relativistic knowledge in intelligent tutoring. Computers in Human Behavior, 5, 53–64.CrossRefGoogle Scholar
  27. Scandura, J. M. (2007). Introduction to knowledge representation, construction methods, associated theories and implications for advanced tutoring/learning systems. Technology, Instruction, Cognition and Learning, 5, 91–99.Google Scholar
  28. Seel, N. M. (1991). Weltwissen und mentale Modelle. Göttingen: Hogrefe.Google Scholar
  29. Seel, N. M. (1999). Educational diagnosis of mental models: Assessment problems and technology-based solutions. Journal of Structural Learning and Intelligent Systems, 14(2), 153–185.Google Scholar
  30. Seel, N. M. (2008). Empirical perspectives on memory and motivation. In J. Michael Spector (Ed.), Handbook of research on educational communications and technology (AECT). New York, NY: Routledge (in press).Google Scholar
  31. Stracke, I. (2004). Einsatz computerbasierter Concept Maps zur Wissensdiagnose in der Chemie. Empirische Untersuchungen am Beispiel des Chemischen Gleichgewichts. Münster: Waxmann.Google Scholar
  32. Stoyanova, N., & Kommers, P. (2002). Concept mapping as a medium of shared cognition in computer-supported collaborative problem solving. Journal of Interactive Learning Research, 13(1/2), 111–133.Google Scholar
  33. Taricani, E. M., & Clariana, R. B. (2006). A technique for automatically scoring open-ended concept maps. Educational Technology, Research, and Development, 54(1), 65–82.CrossRefGoogle Scholar
  34. Tergan, S.-O. (2003). Managing knowledge with computer-based mapping tools. In D. Lassner & C. Mc Naught (Eds.), Proceedings of the ED-media 2003 world conference on educational multimedia, hypermedia & telecommunication (pp. 2514–2517). Honolulu, HI: University of Honolulu.Google Scholar
  35. Tittman, P. (2003). Graphentheorie. Eine anwendungsorientierte Einführung. München: Carl Hanser Verlag.Google Scholar
  36. Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352.CrossRefGoogle Scholar

Copyright information

© Association for Educational Communications and Technology 2008

Authors and Affiliations

  1. 1.Department of Educational ScienceAlbert-Ludwigs-University FreiburgFreiburgGermany

Personalised recommendations