Advertisement

Cultural Studies of Science Education

, Volume 11, Issue 4, pp 959–990 | Cite as

Undergraduate students’ development of social, cultural, and human capital in a networked research experience

  • Jennifer Jo Thompson
  • Evan Conaway
  • Erin L. Dolan
Article

Abstract

Recent calls for reform in undergraduate biology education have emphasized integrating research experiences into the learning experiences of all undergraduates. Contemporary science research increasingly demands collaboration across disciplines and institutions to investigate complex research questions, providing new contexts and models for involving undergraduates in research. In this study, we examined the experiences of undergraduates participating in a multi-institution and interdisciplinary biology research network. Unlike the traditional apprenticeship model of research, in which a student participates in research under the guidance of a single faculty member, students participating in networked research have the opportunity to develop relationships with additional faculty and students working in other areas of the project, at their own and at other institutions. We examined how students in this network develop social ties and to what extent a networked research experience affords opportunities for students to develop social, cultural, and human capital. Most studies of undergraduate involvement in science research have focused on documenting student outcomes rather than elucidating how students gain access to research experiences or how elements of research participation lead to desired student outcomes. By taking a qualitative approach framed by capital theories, we have identified ways that undergraduates utilize and further develop various forms of capital important for success in science research. In our study of the first 16 months of a biology research network, we found that undergraduates drew upon a combination of human, cultural, and social capital to gain access to the network. Within their immediate research groups, students built multidimensional social ties with faculty, peers, and others, yielding social capital that can be drawn upon for information, resources, and support. They reported developing cultural capital in the form of learning to think and work like a scientist—a scientific habitus. They reported developing human capital in the forms of technical, analytical, and communication skills in scientific research. Most of the students had little, direct interaction with network members in other research groups and thus developed little cross-institutional capital. The exception to this trend was at one institution that housed three research groups. Because proximity facilitated shared activities, students across research groups at this institution developed cross-lab ties with faculty and peers through which they developed social, cultural, and human capital. An important long-term concern is whether the capital students have developed will help them access opportunities in science beyond the network. At this point, many undergraduates have had limited opportunities to actually draw on capital beyond the network. Nevertheless, a number of students demonstrated awareness that they had developed resources that they could use in other scientific contexts.

Keywords

Social capital Cultural capital Human capital Science education Undergraduate research 

Resumen

Las llamadas recientes para reforma en la educación biológica de los estudiantes universitarios han destacado la integración de las experiencias de investigación en las experiencias educativas de todos los estudiantes universitarios (e.g., Brewer y Smith en Vision and change in undergraduate biology education: a call to action. American Association for the Advancement of Science, Washington, 2011). La investigación contemporánea científica exige la colaboración entre las disciplinas y las instituciones para investigar las preguntas complejas de investigación, proveyendo nuevos contextos y modelos para involucrar a los estudiantes universitarios en la investigación (Wei y Woodin en CBE Life Sci Educ 10(2):123–131, 2011). Examinamos en este estudio las experiencias de los estudiantes universitarios participando en una red multi-institucional e interdisciplinaria de investigación biológica. A diferencia del modelo tradicional de tipo aprendizaje, en el que un estudiante participa en la investigación bajo uno solo profesor, los estudiantes que participan en la investigación en red tienen oportunidades de desarrollar las relaciones con los profesores y estudiantes que trabajan en otras áreas del proyecto. Examinamos cómo los estudiantes de esta red desarrollan los lazos sociales y en qué medida una experiencia de investigación en red ofrece oportunidades para desarrollar el capital social, cultural y humano. La mayoría de los estudios sobre la participación del estudiante universitario en la investigación científica ha enfocado en la documentación de los resultados estudiantiles (Laursen et al. en Undergraduate research in the sciences: engaging students in real science. Jossey-Bass, San Francisco, 2010) más que dilucidar cómo los estudiantes acceden a las experiencias de investigación o cómo su participación produce resultados estudiantiles deseados (Sadler, Burgin, McKinney y Ponjuan, en J Res Sci Teach 47:235–256, 2009). Al adoptar una estrategia cualitativa influida por las teorías del capital, hemos identificado las maneras en que los estudiantes universitarios utilizan y desarrollan el capital de importancia para éxito en la investigación científica. En nuestro estudio de los primeros dieciséis meses de una red de investigación biológica, encontramos que los estudiantes universitarios hacen uso de una combinación de capital social, cultural y humano para acceder a la red. Dentro de sus grupos de investigación inmediatos, los estudiantes construyeron lazos sociales multidimensionales con profesores, colegas y otras personas, rindiendo el capital social a que pueden recurrir para información, recursos y apoyo. También reportaron el desarrollo del capital cultural (e.g., aprender a pensar y trabajar como un científico) y el capital humano (e.g., habilidades técnicas, analíticas y comunicativas). La mayoría de los estudiantes tenían poca interacción directa con los miembros de otros grupos en la red y por lo tanto desarrollaron poco capital interinstitucional. La única excepción fue en la institución que contenía tres grupos de investigación. Porque la proximidad facilita las actividades compartidas, los estudiantes entre los grupos de investigación en esta institución desarrollaron lazos entre laboratorios con profesores y colegas a través de los cuales desarrollaron capital social, cultural y humano. Una importante preocupación a largo plazo es si el capital que han desarrollado los estudiantes les ayudará a acceder oportunidades en la ciencia más allá de la red. Hasta este momento, muchos estudiantes han tenido pocas oportunidades de hacer uso del capital más allá de la red. Sin embargo, un número de estudiantes demostró la conciencia de que habían desarrollado recursos que podrían utilizar en otros contextos científicos.

Notes

Acknowledgments

Thanks to all of the members of the biology research network that was the focus of this study. Thanks also to the Biology Education Research Group at the University of Georgia for their thoughtful feedback. Support for this research was provided by a grant from the National Science Foundation (NSF IOS-1052286). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NSF.

Supplementary material

11422_2014_9628_MOESM1_ESM.doc (50 kb)
Supplementary material 1 (DOC 49 kb)

References

  1. Angrosino, M. (2007). Doing ethnographic and observational research. Thousand Oaks, CA: Sage. doi: 10.4135/9781849208932.CrossRefGoogle Scholar
  2. Archer, L., Osborne, J., DeWitt, J., Dillon, J., Wong, B., & Willis, B. (2013). ASPIRES: Young people’s science and career aspirations, age 10–14. London: King’s College.Google Scholar
  3. Bandura, A. (1997). Self-efficacy: the exercise of control. New York: Cambridge University Press.Google Scholar
  4. Becher, T., & Trowler, P. (1989). Academic tribes and territories: Intellectual enquiry and the cultures of disciplines. Philadelphia: Open University Press.Google Scholar
  5. Bernard, H. R. (2002). Research methods in anthropology: qualitative and quantitative approaches (3rd ed.). Walnut Creek, CA: Alta Mira.Google Scholar
  6. Blickenstaff, J. C. (2005). Women and science careers: Leaky pipeline or gender filter? Gender and Education, 17(4), 369–386. doi: 10.1080/09540250500145072.CrossRefGoogle Scholar
  7. Borgatti, S. P., & Molina, J. L. (2005). Toward ethical guidelines for network research in organizations. Social Networks, 27(2), 107–117. doi: 10.1016/j.socnet.2005.01.004.CrossRefGoogle Scholar
  8. Bourdieu, P. (1977a). Cultural reproduction and social reproduction. In J. Karabel & A. Halsey (Eds.), Power and ideology in education (pp. 487–511). New York: Oxford.Google Scholar
  9. Bourdieu, P. (1977b). Outline of a theory of practice. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511812507.CrossRefGoogle Scholar
  10. Bourdieu, P. (1997 [1986]). The Forms of Capital. In A. H. Halsey, H. Lauder, P. Brown & A. Stuart Wells (Eds.), Education: culture, economy and society (pp. 46–58). Oxford: Oxford University Press.Google Scholar
  11. Bourdieu, P. (2004). Science of science and reflexivity. Chicago: University of Chicago Press.Google Scholar
  12. Brewer, C. A., & Smith, D. (2011). Vision and change in undergraduate biology education: a call to action. Washington, DC: American Association for the Advancement of Science.Google Scholar
  13. Burt, R. S. (1992). Structural holes: The social structure of competition. Cambridge, MA: Harvard University Press.Google Scholar
  14. Burt, R. S. (1997). The contingent value of social capital. Administrative Science Quarterly, 339–365. doi: 10.2307/2393923.
  15. Carlone, H. B., & Johnson, A. (2007). Understanding the science experiences of successful women of color: Science identity as an analytic lens. Journal of Research in Science Teaching, 44(8), 1187–1218. doi: 10.1002/tea.20237.CrossRefGoogle Scholar
  16. Coleman, J. S. (1988). Social capital in the creation of human capital. American Journal of Sociology, 94, S95–S120. doi: 10.1086/228943.CrossRefGoogle Scholar
  17. COLLEGEdata. (2014). College profile. Annual Survey of Colleges 2013. www.collegedata.com. Accessed 13 March 2014.
  18. Collins, F. S., Morgan, M., & Patrinos, A. (2003). The human genome project: Lessons from large-scale biology. Science, 300(5617), 286–290. doi: 10.1126/science.1084564.CrossRefGoogle Scholar
  19. Corwin Auchincloss, L., Laursen, S. L., Branchaw, J. L., Eagan, K., Graham, M., Hanauer, D. I., et al. (2014). Assessment of course-based undergraduate research experiences: A meeting report. CBE-Life Sciences Education, 13, 29–40. doi: 10.1187/cbe.14-01-0004.Google Scholar
  20. Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods approaches. Thousand Oaks, CA: Sage.Google Scholar
  21. Crisp, G., & Cruz, I. (2009). Mentoring college students: A critical review of the literature between 1990 and 2007. Research in Higher Education, 50(6), 525–545. doi: 10.1007/s11162-009-9130-2.CrossRefGoogle Scholar
  22. DiMaggio, P. (1982). Cultural capital and school success: The impact of status culture participation on the grades of US high school students. American Sociological Review, 47(2), 189–201. doi: 10.2307/2094962.CrossRefGoogle Scholar
  23. Dolan, E. L., & Johnson, D. (2010). The undergraduate–postgraduate–faculty triad: Unique functions and tensions associated with undergraduate research experiences at research universities. CBE-Life Sciences Education, 9(4), 543–553. doi: 10.1187/cbe.10-03-0052.CrossRefGoogle Scholar
  24. Eagan, M., Herrera, F., Garibay, J., Hurtado, S., & Chang, M. (2011). Becoming STEM protégés: factors predicting the access and development of meaningful faculty-student relationships. In Paper presented at the annual meeting for the Association for Institutional Research, May 29–June 2, Chicago, IL. doi: 10.3102/0002831213482038.
  25. Eagan, M. K., Hurtado, S., Chang, M. J., Garcia, G. A., Herrera, F. A., & Garibay, J. C. (2013). Making a difference in science education: The impact of undergraduate research programs. American Educational Research Journal, 50, 683–713.CrossRefGoogle Scholar
  26. Flap, H. D. (1991). Social capital in the reproduction of inequality, a review. Comparative Sociology of Family, Health & Education, 6179–6202.Google Scholar
  27. Gibbs, G. R. (2007). Analysing qualitative data. Beverley Hills, CA: Sage.Google Scholar
  28. Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380. doi: 10.1086/225469.CrossRefGoogle Scholar
  29. Granovetter, M. (1985). Economic action and social structure: The problem of embeddedness. American Journal of Sociology, 91(3), 481–510. doi: 10.1086/228311.CrossRefGoogle Scholar
  30. Hanneman, R. A., & Riddle, M. (2011). Concepts and measures for basic network analysis. In J. Scott & P. J. Carrington (Eds.), The SAGE handbook of social network analysis (pp. 340–369). London: Sage Publications.Google Scholar
  31. Hollstein, B. (2011). Qualitative approaches. In J. Scott & P. J. Carrington (Eds.), The SAGE handbook of social network analysis (pp. 404–416). London: Sage Publications.Google Scholar
  32. Horsch, E., St. John, M., & Christensen, R. L. (2012). A case of reform: The undergraduate research collaboratives. Journal of College Science Teaching, 41(5), 38–43.Google Scholar
  33. Hunter, A.-B., Laursen, S. L., & Seymour, E. (2007). Becoming a scientist: The role of undergraduate research in students’ cognitive, personal, and professional development. Science Education, 91(1), 36–74. doi: 10.1002/sce.20173.CrossRefGoogle Scholar
  34. Hurtado, S., Eagan, M. K., Cabrera, N. L., Lin, M. H., Park, J., & Lopez, M. (2008). Training future scientists: Predicting first-year minority student participation in health science research. Research in Higher Education, 49(2), 126–152. doi: 10.1007/s11162-007-9068-1.CrossRefGoogle Scholar
  35. Kram, K. E., & Isabella, L. A. (1985). Mentoring alternatives: The role of peer relationships in career development. Academy of Management Journal, 28(1), 110–132. doi: 10.2307/256064.CrossRefGoogle Scholar
  36. Lareau, A., & Weininger, E. B. (2003). Cultural capital in educational research: A critical assessment. Theory and Society, 32(5/6), 567–606. doi: 10.1023/B:RYSO.0000004951.04408.b0.CrossRefGoogle Scholar
  37. Laursen, S., Hunter, A.-B., Seymour, E., Thiry, H., & Melton, G. (2010). Undergraduate research in the sciences: Engaging students in real science. San Francisco, CA: Jossey-Bass.Google Scholar
  38. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511815355.CrossRefGoogle Scholar
  39. Lin, N. (2001). Social capital: A theory of social structure and action. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511815447.CrossRefGoogle Scholar
  40. Maple, S. A., & Stage, F. K. (1991). Influences on the choice of math/science major by gender and ethnicity. American Educational Research Journal, 28(1), 37–60. doi: 10.3102/00028312028001037.CrossRefGoogle Scholar
  41. Marx, K. (1992 (1867/1887)). Capital: A critique of political economy. Harmondsworth: Penguin.Google Scholar
  42. May, K. (1958). Undergraduate research in mathematics. American Mathematical Monthly, 65(4), 241–246. doi: 10.2307/2310239.CrossRefGoogle Scholar
  43. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review Of Sociology, 27, 415–444. doi: 10.1146/annurev.soc.27.1.415.CrossRefGoogle Scholar
  44. Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. Theory Into Practice, 31(2), 132–141. doi: 10.1080/00405849209543534.CrossRefGoogle Scholar
  45. Moreno, J. L. (1953). Who shall survive? Foundations of sociometry, group psychotherapy and socio-drama. Oxford: Beacon House.Google Scholar
  46. National Research Council. (2011). Expanding underrepresented minority participation: America’s science and technology talent at the crossroads. Washington, DC: The National Academies Press.Google Scholar
  47. National Science Foundation. (2013a). Research coordination networks (RCN) program solicitation. http://www.nsf.gov/pubs/2013/nsf13520/nsf13520.htm. Accessed 18 March 2014.
  48. National Science Foundation. (2013b). Research experiences for undergraduates (REU) program solicitation. http://www.nsf.gov/pubs/2013/nsf13542/nsf13542.htm. Accessed 18 March 2014.
  49. Pascarella, E., & Terenzini, P. (2005). How college affects students: Findings and insights from twenty years of research: A third decade of research. San Francisco: Jossey-Bass.Google Scholar
  50. Posselt, J. R., & Black, K. R. (2012). Developing the research identities and aspirations of first-generation college students: Evidence from the McNair scholars program. International Journal for Researcher Development, 3(1), 26–48. doi: 10.1108/17597511211278634.CrossRefGoogle Scholar
  51. Putnam, R. D. (1993). The prosperous community: Social capital and public life. The American Prospect, 13(1993), 65–78.Google Scholar
  52. Putnam, R. D. (1995). Bowling alone: America’s declining social capital. Journal of Democracy, 6(1), 65–78. doi: 10.1353/jod.1995.0002.CrossRefGoogle Scholar
  53. Russell, S. H., Hancock, M. P., & McCullough, J. (2007). Benefits of undergraduate research experiences. Science(Washington), 316(5824), 548–549. doi: 10.1126/science.1140384.
  54. Sadler, T. D., Burgin, S., McKinney, L., & Ponjuan, L. (2009). Learning science through research apprenticeships: A critical review of the literature. Journal of Research in Science Teaching, 47, 235–256.Google Scholar
  55. Schultz, T. W. (1961). Investment in human capital. The American Economic Review, L1(1), 1–17.Google Scholar
  56. Seibert, S. E., Kraimer, M. L., & Liden, R. C. (2001). A social capital theory of career success. The Academy of Management Journal, 44(2), 219–237. doi: 10.2307/3069452.CrossRefGoogle Scholar
  57. Simmel, G. ([1922] 1955). Conflict and the web of group affiliations (R. Bendix, Trans.). Glencoe, IL: Free Press.Google Scholar
  58. Stanton-Salazar, R. D. (2011). A social capital framework for the study of institutional agents and their role in the empowerment of low-status students and youth. Youth & Society, 43(3), 1066–1109. doi: 10.1177/0044118X10382877.CrossRefGoogle Scholar
  59. Thiry, H., Laursen, S. L., & Hunter, A.-B. (2011). What experiences help students become scientists? A comparative study of research and other sources of personal and professional gains for STEM undergraduates. The Journal of Higher Education, 82(4), 357–388. doi: 10.1353/jhe.2011.0023.CrossRefGoogle Scholar
  60. Tickle-Degnen, L. (2006). Nonverbal behavior and its functions in the ecosystem of rapport. In V. Manusov & M. L. Patterson (Eds.), The SAGE handbook of nonverbal communication (pp. 381–399). Thousand Oaks, CA: Sage. doi: 10.4135/9781412976152.n20.
  61. Wei, C. A., & Woodin, T. (2011). Undergraduate research experiences in biology: Alternatives to the apprenticeship model. CBE-Life Sciences Education, 10(2), 123–131. doi: 10.1187/cbe.11-03-0028.CrossRefGoogle Scholar
  62. Yosso, T. J. (2005). Whose culture has capital? A critical race theory discussion of community cultural wealth. Race Ethnicity and Education, 8(1), 69–91. doi: 10.1080/1361332052000341006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jennifer Jo Thompson
    • 1
  • Evan Conaway
    • 2
  • Erin L. Dolan
    • 3
  1. 1.Department of Crop and Soil SciencesUniversity of GeorgiaAthensUSA
  2. 2.Division of Biological SciencesUniversity of GeorgiaAthensUSA
  3. 3.Texas Institute for Discovery Education in ScienceUniversity of TexasAustinUSA

Personalised recommendations