Cultural Studies of Science Education

, Volume 11, Issue 1, pp 11–26 | Cite as

STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response

  • Dana L. ZeidlerEmail author


The ubiquitous of STEM education initiatives in recent years has created a bandwagon that has moved at nearly light speed. The impulse of the science education community and policy-makers is to grab hold for dear life or be marginalized from subsequent discussions about the necessity and consequences of using STEM initiatives to prepare and inform our next generation of citizens. This commentary questions the prudence of STEM-related science education goals, as typically represented and discussed in the literature, and likens the current practice to a deficit framework. A sociocultural perspective framed through socioscientific considerations is offered as an alternative conceptualization as well as surplus model to hegemonic STEM practices.


STEM Socioscientific issues Sociocultural issues Scientific literacy 


  1. AAAS. (1990). The liberal art of science: Agenda for action. Washington, DC: AAAS.Google Scholar
  2. AAAS (American Association for the Advancement of Science). (1989). Science for all Americans. Washington, DC: AAAS.Google Scholar
  3. Aikenhead, G. S., Orpwood, G., & Fensham, P. (2011). Scientific literacy for a knowledge society. In C. Linder, L. Ostman, D. Roberts, P. Wickman, G. Erickson, & A. MacKinnon (Eds.), Promoting scientific literacy: Science education research in transaction (pp. 28–44). New York: Routledge/Taylor and Francis Group.Google Scholar
  4. Association of American Universities. (2011). Five-year initiative for improving undergraduate STEM education: Discussion draft. Retrieved from
  5. Boy Scouts of America. (2013). STEM in scouting. Retrieved from
  6. Brown, B. A., Reveles, J. M., & Kelly, G. K. (2005). Scientific literacy and discursive identity: A theoretical framework for understanding science learning. Science Education, 89, 779–802. doi: 10.1002/sce.20069.CrossRefGoogle Scholar
  7. Cartwright, C. C., & Simpson, T. L. (2001). The relationship of moral judgment development and teaching effectiveness of student teachers. Education, 111, 139–144.Google Scholar
  8. Cummings, R., Maddux, R., Richmond, A., & Cladianos, A. (2010). Moral reasoning of education students: The effects of direct instruction in moral development theory and participation in moral dilemma discussion. Teachers College Record, 112, 621–644.Google Scholar
  9. Department of Homeland Security. (2012). DHS announces expanded list of STEM degree programs. Retrieved from
  10. Duncan, A. (2009). Secretary Arne Duncan’s remarks to the President’s Council of Advisors on Science and Technology. Retrieved from
  11. Eastwood, J. L., Sadler, T. D., Zeidler, D. L., Lewis, A., Amiri, L., & Applebaum, S. (2012). Contextualizing nature of science instruction in socioscientific issues. International Journal of Science Education, 34, 2289–2315. doi: 10.1080/09500693.2012.667582.CrossRefGoogle Scholar
  12. Fensham, P. J. (2007). Values in the measurement of students’ science achievement in TIMSS and PISA. In D. Corrigan, J. Dillon, & R. Gunstone (Eds.), The re-emergence of values in science education (pp. 215–229). Rotterdam: Sense Publishers.Google Scholar
  13. Flinders, D., Noddings, N., & Thornton, S. J. (1986). The null curriculum: Its theoretical basis and practical implications. Curriculum Inquiry, 16, 33–42. doi: 10.2307/1179551.CrossRefGoogle Scholar
  14. Fountain, R. M. (1998). Sociologics: An analytical tool for examining socioscientific discourse. Research in Science Education, 28, 110–132. doi: 10.1007/BF02461646.CrossRefGoogle Scholar
  15. Fowler, S. R., Zeidler, D. L., & Sadler, T. D. (2009). Moral sensitivity in the context of socioscientific issues in high school science students. International Journal of Science Teacher Education, 31, 279–296. doi: 10.1080/09500690701787909.CrossRefGoogle Scholar
  16. Friedrich, P. (1992). Interpretation and vision: A critique of cryptopositivism. Cultural Anthropology, 7, 211–231. doi: 10.1525/can.1992.7.2.02a00040.CrossRefGoogle Scholar
  17. Fulton, K., & Britton, T. (2011). STEM teachers in professional learning communities: Good teachers to great teaching. Washington, DC: National Commission on Teaching and America’s Future.Google Scholar
  18. Gauch, H. G, Jr. (2009). Responses and clarification regarding science and worldviews. In M. R. Matthews (Ed.), Science, worldviews and education (pp. 303–325). The Netherlands: Springer.Google Scholar
  19. Gess-Newsome, J., & Lederman, N. G. (1999). Examining pedagogical content knowledge. Boston: Kluwer Academic Publishers.Google Scholar
  20. Green, T. F. (1999). Voices: The educational formation of conscience. Notre Dame, IN: Notre Dame Press.Google Scholar
  21. Greene, J. C., DeStefano, L., Burgon, H., & Hall, J. (2006). An educative, values-engaged approach to evaluating STEM educational programs. In D. Huffman & F. Lawrenz (Eds.), Critical issues in STEM evaluation. New directions for evaluation, 109 (pp. 19–34). San Francisco: Jossey Bass.Google Scholar
  22. Handelsman, J., Ebert-May, D., Beichner, R., Bruns, P., Chang, A., DeHaan, R., et al. (2004). Scientific teaching. Science, 304, 521–522. doi: 10.1126/science.1096022.CrossRefGoogle Scholar
  23. Harris, S. (2010). The moral landscape: How science can determine human values. New York: Free Press.Google Scholar
  24. Institute of Educational Sciences. (2010). What works clearinghouse: Procedures and standards handbook (Version 2.1). Retrieved from
  25. Isaacson, W. (2011). Steve Jobs. New York: Simon & Schuster.Google Scholar
  26. Kincheloe, J. L., & Tobin, K. (2009). The much exaggerated death of positivism. Cultural Studies of Science Education, 4, 513–528. doi: 10.1007/s11422-009-9178-5.CrossRefGoogle Scholar
  27. Klosterman, M., & Sadler, T. D. (2010). Multi-level assessment of scientific content knowledge gains associated with socioscientific issues-based instruction. International Journal of Science Education, 32, 1017–1043. doi: 10.1080/09500690902894512.CrossRefGoogle Scholar
  28. Kohlberg, L., Boyd, D., & Levine, C. (1990). The return of stage six: Its principle and moral point of view. In T. Wren (Ed.), The moral domain: Essays in the ongoing discussion between philosophy and the social sciences (pp. 151–181). Cambridge, MA: MIT Press.Google Scholar
  29. Lacey, H. (2007). The interplay of scientific activity, worldviews and value outlooks. Science & Education, 18(6–7), 839–860. doi: 10.1007/s11191-007-9114-6.Google Scholar
  30. Lawrenz, F., & Huffman, D. (2006). Methodological pluralism: The gold standard of STEM evaluation. In D. Huffman & F. Lawrenz (Eds.), Critical issues in STEM evaluation. New Directions for Evaluation, 109, 19–34. doi: 10.1002/ev.176.
  31. Lederman, N. G., & Zeidler, D. L. (1987). Science teachers’ conceptions of the nature of science: Do they really influence teaching behavior? Science Education, 71, 721–734. doi: 10.1002/sce.3730710509.CrossRefGoogle Scholar
  32. Lee, H., Chang, H., Choi, K., Kim, S. W., & Zeidler, D. L. (2012). Developing character and values for global citizens: Analysis of pre-service science teachers’ moral reasoning on socioscientific issues. International Journal of Science Education, 34, 925–953. doi: 10.1080/09500693.2011.625505.CrossRefGoogle Scholar
  33. Lee, H., Yoo, J., Choi, K., Kim, S., Krajcik, J., Herman, B., et al. (2013). Socioscientific issues as a vehicle for promoting character and values for global citizens. International Journal of Science Education, 35, 2079–2113. doi: 10.1080/09500693.2012.749546.CrossRefGoogle Scholar
  34. MacCullum, J. A. (1993). Teacher reasoning and moral judgment in the context of student discipline situations. Journal of Moral Education, 22, 3–28. doi: 10.1080/0305724930220101.CrossRefGoogle Scholar
  35. Maxwell, J. (2004). Causal explanation, qualitative research and scientific inquiry in education. Educational Researcher, 33(2), 3–11. doi: 10.3102/0013189X033002003.CrossRefGoogle Scholar
  36. Mueller, M. P., & Zeidler, D. L. (2010). Moral–ethical character and science education: Ecojustice ethics through socioscientific issues (SSI). In D. Tippins, M. Mueller, M. van Eijck, & J. Adams (Eds.), Cultural studies and environmentalism: The confluence of ecojustice, place-based (science) education, and indigenous knowledge systems (pp. 105–128). New York: Springer. doi: 10.1007/978-90-481-3929-3_8.CrossRefGoogle Scholar
  37. Narvaez, D., & Bock, T. (2002). Moral schemas and tacit judgment or how the defining issues test is supported by cognitive science. Journal of Moral Education, 31, 297–314. doi: 10.1080/0305724022000008124.CrossRefGoogle Scholar
  38. National Academy of Sciences. (2012). A framework for K-12 science education: Frequently asked questions. Retrieved from
  39. National Research Council. (2011). Successful K-12 STEM Education: Identifying effective approaches in Science, Technology, Engineering, and Mathematics. Committee on Highly Successful Science Programs for K-12 Science Education. Board on Science Education and Board on Testing and Assessment, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.Google Scholar
  40. National Research Council. (2013a). Next generation science standards for states by states: Appendix H. Understanding the scientific enterprise: The nature of science in the next generation science standards. Retrieved from:
  41. National Research Council. (2013b). Next generation science standards for states by states: Appendix J. Science, technology, society and the environment. Retrieved from
  42. National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.Google Scholar
  43. National Science Foundation. (2010). Preparing the next generation of STEM innovators: identifying and developing our nation’s human capital. Retrieved from
  44. Ratcliffe, M., & Grace, M. (2003). Science education for citizenship: Teaching socio-scientific issues. Maidenhead: Open University Press.Google Scholar
  45. Roberts, D. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  46. Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45, 1–42. doi: 10.1080/03057260802681839.CrossRefGoogle Scholar
  47. Sadler, T. D. (2011). Situating socio-scientific issues in classrooms as a means of achieving goals of science education. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom: Teaching, learning and research (pp. 1–9). Dordrecht: Springer. doi: 10.1007/978-94-007-1159-4.CrossRefGoogle Scholar
  48. Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46, 909–921. doi: 10.1002/tea.20327.CrossRefGoogle Scholar
  49. Tippins, D. J., Mueller, M. P., van Eijck, M., & Adams, J. (2010). Cultural studies and environmentalism: The confluence of ecojustice, place-based (science) education, and indigenous knowledge systems. The Netherlands: Springer. doi: 10.1007/978-90-481-3929-3.CrossRefGoogle Scholar
  50. Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29, 1387–1410. doi: 10.1080/09500690601068095.CrossRefGoogle Scholar
  51. Wingo, G. M. (1974). Philosophies of education. Lexington, MA: D.C. Heath and Company.Google Scholar
  52. Yakman, G. (2008). STΣ@M education: An overview of creating a model of integrative education. Retrieved from
  53. Yang, F. Y., & Tsai, C. C. (2012). Personal epistemology and science learning: A review on empirical studies. In B. J. Fraser, et al. (Eds.), Second International Handbook of Science Education (pp. 259–280). New York: Springer.CrossRefGoogle Scholar
  54. Zeidler, D. L. (2002). Dancing with maggots and saints: Past and future visions for subject matter knowledge, pedagogical knowledge, and pedagogical content knowledge in reform and science teacher education. Journal of Science Teacher Education, 13, 27–42. doi: 10.1023/A:1015129825891.CrossRefGoogle Scholar
  55. Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research and practice. In S. K. Abell, & N. G. Lederman (Eds.), Handbook of research on Science Education (pp. 697–726). Mahwah, NY: Routledge.Google Scholar
  56. Zeidler, D. L., Applebaum, S. M., & Sadler, T. D. (2011). Enacting a socioscientific issues classroom: Transformative transformations. In T. D. Sadler (Ed.), Socio-scientific issues in science classrooms: Teaching, learning and research (pp. 277–306). The Netherlands: Springer. doi: 10.1007/978-94-007-1159-4_16.CrossRefGoogle Scholar
  57. Zeidler, D. L., Berkowitz, M., & Bennett, K. (2014). Thinking (scientifically) responsibly: The cultivation of character in a global science education community. In M. P. Mueller, D. J. Tippins, & A. J. Steward (Eds.), Assessing schools for generation R (responsibility): A guide to legislation and school policy in science education (pp. 83–99). The Netherlands: Springer. doi: 10.1007/978-94-007-2748-9_7.CrossRefGoogle Scholar
  58. Zeidler, D. L., Herman, B., Ruzek, M., Linder, A., & Lin, S. S. (2013). Cross-cultural epistemological orientations to socioscientific issues. Journal of Research in Science Teaching, 50, 251–283. doi: 10.1002/tea.21077.CrossRefGoogle Scholar
  59. Zeidler, D. L., & Keefer, M. (2003). The role of moral reasoning and the status of socioscientific issues in science education: Philosophical, psychological and pedagogical considerations. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education (pp. 7–38). The Netherlands: Kluwer Academic Press. doi: 10.1007/1-4020-4996-X.CrossRefGoogle Scholar
  60. Zeidler, D. L., & Sadler, T. D. (2008). The role of moral reasoning in argumentation: Conscience, character and care. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 201–216). The Netherlands: Springer.Google Scholar
  61. Zeidler, D. L., & Sadler, T. D. (2011). An inclusive view of scientific literacy: Core issues and future directions of socioscientific reasoning. In C. Linder, L. Ostman, D. A. Roberts, P. Wickman, G. Erickson, & A. MacKinnon (Eds.), Promoting scientific literacy: Science education research in transaction (pp. 176–192). New York: Routledge.Google Scholar
  62. Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing reflective judgment through socioscientific issues. Journal of Research in Science Teaching, 46(1), 74–101. doi: 10.1002/tea.20281.CrossRefGoogle Scholar
  63. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89, 357–377. doi: 10.1002/sce.20048.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Teaching and Learning, College of EducationUniversity of South Florida – Tampa BayTampaUSA

Personalised recommendations