Cultural Studies of Science Education

, Volume 7, Issue 3, pp 659–681 | Cite as

Students’ communication, argumentation and knowledge in a citizens’ conference on global warming

Article

Abstract

An empirical study on 12th-grade students’ engagement on a global warming debate as a citizens’ conference is reported. Within the design-based research methodology, an interdisciplinary teaching sequence integrating an initiation to non-violent communication was developed. Students’ debates were analyzed according to three dimensions: communication, argumentation, and knowledge. Students regulated their oral contributions to the debate by identifying judgments in their discussions. Rhetorical processes developed by students were mainly related to the identity of debate protagonists with interest attributions, authority, and positions. Students’ arguments also relied on empirical data. The students’ knowledge focused on energy choices, economic, political, and science development issues. Implications for socioscientific issues integration in class are discussed.

Keywords

Global warming Argumentation Design-based research Socioscientific issues 

References

  1. Albe, V. (2007). Des controverses scientifiques socialement vives en éducation aux sciences. Etat des recherches et perspectives. Mémoire de synthèse pour l’Habilitation à diriger des Recherches. Université Lyon 2.Google Scholar
  2. Albe, V. (2008a). Students’ positions and considerations of scientific evidence about a controversial socio-scientific issue. Science and Education, Special Issue on Social and Ethical Issues in Science Education (Guest Editor Dana L. Zeidler), 17, 805–827.Google Scholar
  3. Albe, V. (2008b). When scientific knowledge, daily life experience, epistemological and social considerations intervene: Students’ argumentation in group discussions on a socio-scientific issue. Research in Science Education, 38, 67–90.CrossRefGoogle Scholar
  4. Albe, V., & Gombert, M.-J. (2010). Intégration scolaire d’une controverse socioscientifique contemporaine: Savoirs et pratiques d’élèves pour appréhender les savoirs et pratiques de scientifiques. Recherches en Didactiques des Sciences et des Technologies, 2, 103–126.Google Scholar
  5. Alexopoulou, E., & Driver, R. (1997). Small group discussions in physics: Peer interaction modes in pairs and fours. Journal of Research in Science Teaching, 33, 1099–1114.CrossRefGoogle Scholar
  6. Bader, B. (2001). Etude de conversations estudiantines autour d’une controverse entre scientifiques sur la question du réchauffement climatique. Thèse de doctorat de l’université Laval.Google Scholar
  7. Bourdieu, E. (1998). Savoir faire: Contribution à une théorie dispositionnelle de l’action. Paris: Seuil.Google Scholar
  8. Bridges, D. (1979). Education, democracy and discussion. Slough, UK: NFER Publishing Company.Google Scholar
  9. Bru, M. (1991). Les variations didactiques dans l’organisation des conditions d’apprentissage. Toulouse: EUS.Google Scholar
  10. Burbules, N., & Rice, S. (1991). Dialogue across differences: Continuing the conversation. Harvard Educational Review, 61, 393–416.Google Scholar
  11. Chevallard, Y. (2007). Readjusting didactics to a changing epistemology. European Educational Research Journal, 6, 9–27.Google Scholar
  12. Clayton, D. S., & Gautier, C. (2006). Scientific argumentation in earth system science education. Journal of Geoscience Education, 54, 374–382.Google Scholar
  13. Cobb, P., Confrey, J., Di Dessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32, 9–13.CrossRefGoogle Scholar
  14. Dawes, L. (2004). Talk and learning in classroom science. International Journal of Science Education, 26, 677–695.CrossRefGoogle Scholar
  15. Dori, Y. J., Tal, R., & Tsaushu, M. (2003). Teaching biotechnology through case studies: Can we improve higher-order thinking skills of non-science majors? Science Education, 87, 767–793.CrossRefGoogle Scholar
  16. Edwards, D. (1997). Discourse and cognition. London: Sage.Google Scholar
  17. Gautier, C., & Rebich, S. (2005). The use of a mock environment summit to support learning about global climate change. Journal of Geoscience Education, 53, 5–16.Google Scholar
  18. Gayford, C. (1992). Patterns of group behaviour in open-ended problem solving in science classes of 15-year-old students in England. International Journal of Science Education, 14, 41–49.CrossRefGoogle Scholar
  19. Grace, M. (2009). Developing high quality decision-making discussions about biological conservation in a normal classroom setting. International Journal of Science Education, 31, 551–570.CrossRefGoogle Scholar
  20. Harris, R., & Ratcliffe, M. (2005). Socio-scientific issues and the quality of exploratory talk what can be learned from schools involved in a “collapsed day” project? Curriculum Journal, 16, 439–453.CrossRefGoogle Scholar
  21. Jiménez-Aleixandre, M. -P., & Erduran, S. (2008). Argumentation in science education: An overview. In M.-P. Jiménez-Aleixandre & S. Erduran (Eds.), Argumentation in science education (pp. 3–28). Berlin: Springer.Google Scholar
  22. Kelly, G., & Bazerman, C. (2003). How students argue scientific claims: A rhetorical-semantic analysis. Applied Linguistics, 24, 28–55.CrossRefGoogle Scholar
  23. Kelly, G., Crawford, T., & Green, J. (2001). Common task and uncommon knowledge: Dissenting voices in the discursive construction of physics across small laboratory groups. Linguistics and Education, 12, 135–174.CrossRefGoogle Scholar
  24. Kelly, G., Regev, J., & Prothero, W. (2005). Assessing lines of evidence with argumentation analysis. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Dallas TX, April 4–7, 2005.Google Scholar
  25. Kelly, G., Regev, J., & Prothero, W. (2008). Analysis of lines of reasoning in written argumentation. In M.-P. Jiménez-Aleixandre & S. Erduran (Eds.), Argumentation in science education (pp. 137–158). Berlin: Springer.Google Scholar
  26. Kittleson, J. M., & Southerland, S. A. (2004). The role of discourse in group knowledge construction: A case study of engineering students. Journal of Research in Science Teaching, 41, 267–293.CrossRefGoogle Scholar
  27. Klosterman, M., & Sadler, T. D. (2010). Multi-level assessment of content knowledge gains in the context of socio-scientific issues-based instruction. International Journal of Science Education, 32, 1017–1043.CrossRefGoogle Scholar
  28. Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85, 291–310.CrossRefGoogle Scholar
  29. Kortland, K. (1996). An STS case study about students’ decision making on the waste issue. Science Education, 80, 673–689.CrossRefGoogle Scholar
  30. Kutnick, P., & Rogers, C. (1994). Groups in schools. London: Cassell.Google Scholar
  31. Latour, B. (2007). Cours de description des controverses. Website of the Ecole des mines de Paris. http://controverses.ensmp.fr.
  32. Legardez, A. (2006). Enseigner des questions socialement vives. Quelques points de repêres. In A. Legardez & L. Simonneaux (Eds.), L’Ecole à l’épreuve de l’actualité. Enseigner les questions vives. (pp. 19–31). Paris: ESF.Google Scholar
  33. Levinson, R. (2004). Teaching bioethics in science: Crossing a bridge too far ? Canadian Journal of Science, Mathematics and Technology Education, 4, 353–369.CrossRefGoogle Scholar
  34. Levinson, R. (2006). Towards a theoretical framework for teaching controversial socio-scientific issues. International Journal of Science Education, 28, 1201–1244.CrossRefGoogle Scholar
  35. Levinson, R. (2010). Science education and democratic participation: An uneasy congruence? Studies in Science Education, 46, 69–118.CrossRefGoogle Scholar
  36. Lewis, J., & Leach, J. (2006). Discussion of socio-scientific issues: The role of science knowledge. International Journal of Science Education, 28, 1267–1287.CrossRefGoogle Scholar
  37. Mann, M. E., Bradley, R. S. & Hughes, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779–787.Google Scholar
  38. Mercer, N. (1996). The guided construction of knowledge. Clevedon, England: Multilingual Matters.Google Scholar
  39. Ministère de l’Éducation Nationale. (2005). Bulletin Officiel No 5 du 25 août 2005.Google Scholar
  40. Oulton, C., Dillon, J., & Grace, M. (2004). Reconceptualizing the teaching of controversial issues. International Journal of Science Education, 26, 411–424.CrossRefGoogle Scholar
  41. Pedretti, E. (1999). Decision making and STS education: exploring scientific knowledge and social responsibility in schools and science centers through an issues-based approach. Journal of School Science and Mathematics, 99, 174–181.CrossRefGoogle Scholar
  42. Plantin, C. (1996). L’argumentation. Paris: Seuil.Google Scholar
  43. Potter, J. (1997). Representing reality: Discourse, rhetoric and social construction. London: Sage.Google Scholar
  44. Rice, S., & Burbules, N. (1992). Communicative virtues and educational relations. Philosophy of Education, 1992, 34–44.Google Scholar
  45. Rosemberg, M. B. (1999). Les mots sont des fenêtres (où bien ce sont des murs). Initiation à la communication non violente. Paris: La Découverte and Syros.Google Scholar
  46. Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41, 513–536.CrossRefGoogle Scholar
  47. Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45, 1–42.CrossRefGoogle Scholar
  48. Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26, 387–409.CrossRefGoogle Scholar
  49. Sadler, T. D., & Klosterman, M. (2009). Exploring the socio-political dimensions of global warming. Science Activities, 45, 9–12.Google Scholar
  50. Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of research in science teaching, 42, 112–138.CrossRefGoogle Scholar
  51. Schweizer, D. M., & Kelly, G. J. (2005). An investigation of student engagement in a global warming debate. Journal of Geoscience Education, 53, 75–84.Google Scholar
  52. Simonneaux, L., & Albe, V. (2007). Types et domaines d’arguments utilisés dans des débats socio-scientifiques. In C. Plantin & C. Buty (Éds.), L’argumentation en classe de sciences (pp. 117–151). Lyon: INRP.Google Scholar
  53. Tal, R., & Hochberg, N. (2003). Assessing high order thinking of students participating in the “WISE” project in Israel. Studies in Educational Evaluation, 29, 69–89.CrossRefGoogle Scholar
  54. Tal, T., & Kedmi, Y. (2006). Teaching socio-scientific issues: Classroom culture and students’ performances. Cultural Studies in Science, 1, 615–644.Google Scholar
  55. Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39, 35–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Ecole Normale Supérieure de CachanParisFrance
  2. 2.Lycée Agricole et Agroalimentaire La RoqueRodezFrance

Personalised recommendations