Cultural Studies of Science Education

, Volume 3, Issue 2, pp 297–328 | Cite as

Conceptual change: a discussion of theoretical, methodological and practical challenges for science education

Article

Abstract

Conceptual change views of teaching and learning processes in science, and also in various other content domains, have played a significant role in research on teaching and learning as well as in instructional design since the late 1970s. An important issue is whether conceptual change can provide a powerful framework for improving instructional practice in such a way that students’ levels of scientific literacy are significantly increased. In this article, the first section provides an overview on the development of conceptual change perspectives. In sections two to six, we examine the different ways that researchers have facilitated the collection of data and empirically evaluated learning as conceptual change based on these different theoretical perspectives. In section seven, we identify key issues of conceptual change with a deliberate emphasis on their contribution to improve instructional practice and conclude the article by posing challenges at theoretical, methodological and practical levels. We contend that conceptual change perspectives still have the potential to significantly improve instructional practice. However, it becomes also evident that actual practice is far from what conceptual change perspectives propose and that change of this practice will be a rather difficult and long-lasting process.

Keywords

Conceptual change Science education Epistemology Ontology Affective domain 

References

  1. Abraham, M. R. (1998). The learning cycle approach as a strategy for instruction in science. In: B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 513–524). Dordrecht, The Netherlands: Kluwer.Google Scholar
  2. Anderson C. W. (2007). Perspectives on science learning. In S. Abell & N. Ledermann (Eds.), Handbook of research on science education (pp. 3–30). Mahwah. NJ: Erlbaum.Google Scholar
  3. Anderson, R. D., & Helms, J. V. (2001). The ideal of standards and the reality of schools: needed research. Journal of Research in Science Teaching, 38, 3–16.CrossRefGoogle Scholar
  4. Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart and Winston.Google Scholar
  5. Bachelard, G. (1968). The philosophy of No. A philosophy of the new scientific mind. New York: The Orion Press.Google Scholar
  6. Baumert, J., & Köller, O. (2000). Unterrichtsgestaltung, verständnisvolles Lernen und multiple Zielerreichung im Mathematik- und Physikunterricht der gymnasialen Oberstufe [Instructional design, learning and achievement of multiple goals in mathematics, science upper secondary instruction]. In J. Baumert, W. Bos, & R. Lehmann (Eds.), TIMSS/III. Dritte Internationale Mathematik- und Naturwissenschaftsstudie. (Vol. 2., pp. 271–315). Opladen, Germany: Leske + Budrich.Google Scholar
  7. Beeth, M., Duit, R., Prenzel, M., Ostermeier, C., Tytler, R., & Wickman, P. O. (2003). Quality development projects in science education. In D. Psillos, P. Kariotoglou, V. Tselfes, G. Fassoulopoulos, E. Hatzikraniotis, & M. Kallery (Eds.), Science education research in the knowledge based society (pp. 447–457). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  8. Bereiter C., & Scardamalier, M. (1989). Intentional learning as a goal of instruction. In L. B. Resnick (Ed.), Knowing, learning and instruction: Essays in honor of Robert Glaser (pp. 361–392). Hillsdale, NJ: Erlbaum.Google Scholar
  9. Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33, 3–15.CrossRefGoogle Scholar
  10. Bryce, T., & MacMillan, K. (2005). Encouraging conceptual change: the use of bridging analogies in the teaching of action-reaction forces and the ‘at rest’ condition in physics. International Journal of Science Education, 27, 737–763.CrossRefGoogle Scholar
  11. Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: A Bradford Book. The MIT Press.Google Scholar
  12. Carr, M. (1996). Interviews about instances and interviews about events. In D. F. Treagust, R. Duit, & B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics (pp. 44–53). New York: Teachers College Press.Google Scholar
  13. Chan, C., Burtis, J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, 15(1), 1–40.CrossRefGoogle Scholar
  14. Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27–43.CrossRefGoogle Scholar
  15. Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science education. Review of Educational Research, 63, 1–49.Google Scholar
  16. Chiu, M.-H., Chou, C.-C., & Liu, C.-J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39, 713–737.CrossRefGoogle Scholar
  17. Concord Consortium (2001, October). BioLogica., from http://biologica.concord.org.
  18. De Boer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37, 582–601.CrossRefGoogle Scholar
  19. Driver, R., & Easley, J. A. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61–84.CrossRefGoogle Scholar
  20. Driver, R., & Erickson, G. L. (1983). Theories-in-action: Some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education, 10, 37–60.CrossRefGoogle Scholar
  21. Duit, R. (1995). Constraints on knowledge acquisition and conceptual change: The case of physics. Paper presented at the 6th European Conference for Research on Learning and Instruction, Nijmegen, The Netherlands.Google Scholar
  22. Duit, R. (1998, April). Towards multi-perspective views of science learning and instruction. Paper presented at the annual meeting of the American Educational Research Association in San Diego.Google Scholar
  23. Duit, R. (2007). STCSE—Bibliography: Students’ and teachers’ conceptions and science education. Kiel, Germany: IPN—Leibniz Institute for Science Education (http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html).
  24. Duit, R., Widodo A., & Wodzinski, C. T. (2007). Conceptual change ideas—Teachers’ views and their instructional practice. In S. Vosniadou, A. Baltas, & X. Vamvokoussi (Eds.), Re-framing the problem of conceptual change in learning and instruction (pp. 197–217). Advances in Learning and Instruction Series. Amsterdam, The Netherlands: Elsevier.Google Scholar
  25. Duit, R., & Treagust, D. F. (1998). Learning in science—From behaviourism towards social constructivism, beyond. In B. J. Fraser & K. Tobin (Eds.), International handbook of Science Education, Part 1 (pp. 3–25). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  26. Duit, R., & Treagust, D. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671–688.CrossRefGoogle Scholar
  27. Duit, R., Treagust, D. F., & Widodo, A. (2008). Teaching science for conceptual change: Theory and practice. In S. Vosniadou et al. (Eds.), Handbook on conceptual change (pp. 629–646). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  28. Duschl, R. A., & Gitomer, D. H. (1991). Epistemological perspectives of conceptual change: The case of physics. Journal of Research in Science Teaching, 28, 839–858.CrossRefGoogle Scholar
  29. Dykstra, D. I., Boyle, C. F., & Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education, 76, 615–652.CrossRefGoogle Scholar
  30. Glynn, S. M, & Duit, R. (1995). Learning science meaningfully: Constructing cenceptual models. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 3–33). New Jersey: Lawrence Erlbaum Associates.Google Scholar
  31. Grayson, D. J. (1996). Concept substitution: A strategy for promoting conceptual change. In D. F. Treagust, R. Duit, & B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics (pp. 152–161). New York: Teachers College Press.Google Scholar
  32. Greeno, J. G., Collins, A. M., & Resnick, L. B. (1997). Cognition and learning. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 15–46). New York: Simon & Schuster Macmillan.Google Scholar
  33. Guzetti, B. J., Snyder, T. E., Glass, G. V., & Gamas, W. S. (1993). Promoting conceptual change in science: A comparative meta-analysis of instructional interventions from reading education and science education. Reading Research Quarterly, 28, 116–159.CrossRefGoogle Scholar
  34. Harlen, W. (1999). Effective teaching of science: A review of research. Edinburgh, UK: The Scottish Council for Research in Education.Google Scholar
  35. Harrison, A. G., & Treagust, D. F. (1993). Teaching with analogies: A case study in grade 10 optics. Journal of Research in Science Teaching, 30, 1291–1307.CrossRefGoogle Scholar
  36. Hashweh, M. Z. (1986). Toward an explanation of conceptual change. European Journal of Science Education, 8, 229–249.Google Scholar
  37. Hennessy, S. (1993). Situated cognition and cognitive apprenticeship: Implications for classroom learning. Studies in Science Education, 22, 1–41.CrossRefGoogle Scholar
  38. Hewson, P. W. (1982). A case study of conceptual change in special relativity: The influence of prior knowledge in learning. European Journal of Science Education, 4, 61–78.Google Scholar
  39. Hewson, P., & Hennessey, M. G. (1992). Making status explicit: A case study of conceptual change. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 176–187). Proceedings of an international workshop. Kiel, Germany: IPN—Institute for Science Education.Google Scholar
  40. Hewson, P. W., & Hewson, M. G. A’B. (1992). The status of students’ conceptions. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 59–73). Proceedings of an international workshop. Kiel, Germany: IPN—Institute for Science Education.Google Scholar
  41. Hewson, P. W., & Lemberger, J. (2000). Status as the hallmark of conceptual change. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education (pp. 110–125). Buckingham, UK: Open University Press.Google Scholar
  42. Hewson, P. W., Tabachnick, B. R., Zeichner, K. M., Blomker, K. B., Meyer, H., Lemberger, J., Marion, R., Park, H.-J., & Toolin, R. (1999). Educating prospective teachers of biology: Introduction and research methods. Science Education, 83, 247–273.CrossRefGoogle Scholar
  43. Hewson, P. W., & Thorley, N. R. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11, 541–553.CrossRefGoogle Scholar
  44. Jung, W. (1993). Hilft die Entwicklungspsychologie dem Physikdidaktiker [Does developmental psychology help the physics educator?]. In R. Duit & W. Gräber (Eds.), Kognitive Entwicklung und naturwissenschaftlicher Unterricht (pp. 86–107). Kiel, Germany: IPN−Institute for Science Education.Google Scholar
  45. Limon, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: a critical appraisal. Learning and Instruction, 11, 357–380.CrossRefGoogle Scholar
  46. Mason, L. (2001). Responses to anomalous data on controversial topics and theory change. Learning and Instruction, 11, 453–484.CrossRefGoogle Scholar
  47. Mortimer, E. F. (1995). Conceptual change or conceptual profile change? Science & Education, 4, 267–285.CrossRefGoogle Scholar
  48. Müller, C. T. (2004). Subjektive Theorien und handlungsleitende Kognitionen von Lehrern als Determinanten schulischer Lehr-Lern-Prozesse im Physikunterricht [Teachers’ subjective theories and cognitions and teaching and learning processes in physics instruction]. Studien zum Physikunterricht, Band 33. Berlin, Germany: Logos.Google Scholar
  49. Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7–14). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  50. Nussbaum, J. (1989). Classroom conceptual change: Philosophical perspectives. International Journal of Science Education, 11, 530–540.CrossRefGoogle Scholar
  51. OECD-PISA (1999). Measuring student knowledge and skills: A new framework for assessment. Paris: OECD.Google Scholar
  52. Oser, F. K., & Baeriswyl, F. J. (2001). Choreographies of teaching: Bridging instruction to learning. In V. Richardson (Ed.), AERA’s handbook of research on teaching (4th ed., pp. 1031–1065). Washington DC: American Educational Research Association.Google Scholar
  53. Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 6, 167–199.Google Scholar
  54. Piquette, J. S., & Heikkinen, H. W. (2005). Strategies reported used by instructors to address student alternate conceptions in chemical equilibrium. Journal of Research in Science Teaching, 42, 1112–1134.CrossRefGoogle Scholar
  55. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227.CrossRefGoogle Scholar
  56. Reyer, T. (2004). Oberflächenmerkmale und Tiefenstrukturen im Unterricht. Exemplarische Analysen im Physikunterricht der gymnasialen Sekundarstufe [Surface structures and deep structures in instruction: Exemplary analysis of lower secondary physics instruction]. Berlin, Germany: Logos.Google Scholar
  57. Salomon, G., & Globerson, T. (1987). Skill may not be enough: the role of mindfulness in learning and transfer. International Journal of Educational Research, 11, 623–637.CrossRefGoogle Scholar
  58. Scott, P. H., Asoko, H. M. , & Leach, J. (2007). Student conceptions and conceptual change learning in science. In S. Abell & N. Ledermann (Eds.), Handbook of research on science education (pp. 31–56). Mahwah, NJ: Erlbaum.Google Scholar
  59. Seiler, T.B. (1973). Die Bereichsspezifizität formaler Denkstrukturen - Konsequenzen für den pädagogischen Prozess [The domain-specific nature of formal thinking patterns - consequences for the pedagogical process]. In K. Frey & M. Lang (Eds.), Kognitionspsychologie und naturwissenschaftlicher Unterricht (pp. 249–283). Bern, Switzerland: Huber.Google Scholar
  60. Sinatra, G. M., & Pintrich P. R. (Eds.). (2003). Intentional conceptual change. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  61. Solomon, J. (1987). Social influences on the construction of pupils’ understanding of science. Studies in Science Education, 14, 63–82.CrossRefGoogle Scholar
  62. Solsona, N., Izquierdo, M., & de Jong, O. (2003). Exploring the development of students’ conceptual profiles of chemical change. International Journal of Science Education, 25, 3–12.CrossRefGoogle Scholar
  63. Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding. In L. West & L. Pines (Eds.), Cognitive structure and conceptual change (pp. 211–231). Orlando. FL.: Academic Press.Google Scholar
  64. Thagard, P. (1991). Concepts and conceptual change. In J. H. Fetzer (Ed.), Epistemology and cognition (pp. 101–120). Dordrecht: Kluwer.Google Scholar
  65. Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.Google Scholar
  66. Thorley, N. R. (1990). The role of the conceptual change model in the interpretation of classroom interactions. Unpublished doctoral dissertation, University of Wisconsin-Madison, Wisconsin, USA.Google Scholar
  67. Treagust, D. F., Venville, G. J., Harrison, A. G., & Tyson, L (1997, March). Diagnosing changes in conceptual status based on transcripts of students’ interviews. Paper presented at the annual meeting of the American Educational Research Association (AERA), Chicago.Google Scholar
  68. Tsui,C.-Y., & Treagust, D. F. (2004, April). Learning genetics with multiple representations: cross-case analyses of students’ conceptual status. Paper presented at the annual meeting of the National Association for Research in Science Teaching (NARST), Vancouver, Canada.Google Scholar
  69. Tsui, C.-Y., & Treagust, D. F. (2007). Understanding genetics: Analysis of secondary students’ conceptual status. Journal of Research in Science Teaching, 44, 205–235.CrossRefGoogle Scholar
  70. Toulmin, S. (1972). Human understanding, Vol. 1. Oxford, UK: Oxford University Press.Google Scholar
  71. Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change in the classroom. Science Education, 81, 387–404.CrossRefGoogle Scholar
  72. van der Veer, R., & Valsiner, J. (1991). Understanding Vygotsky: A quest for synthesis. Oxford, UK: Blackwell.Google Scholar
  73. Venville, G., Gribble, S. J., & Donovan, J. (2005). An exploration of young children’s understandings of genetics concepts from ontological and epistemological perspectives. Science Education, 89, 614–633.CrossRefGoogle Scholar
  74. Venville, G. J., & Treagust, D. F. (1996). The role of analogies in promoting conceptual change in biology. Instructional Science, 24, 295–320.CrossRefGoogle Scholar
  75. Venville, G. J, & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35, 1031–1055.CrossRefGoogle Scholar
  76. Villani, A. (1992). Conceptual change in science and science education. Science Education, 76, 223–237.CrossRefGoogle Scholar
  77. Vosniadou, S. (1994). Capturing and modelling the process of conceptual change. Learning and Instruction, 4, 45–69.CrossRefGoogle Scholar
  78. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: a study of conceptual change in childhood. Cognitive Psychology, 24, 535–585.CrossRefGoogle Scholar
  79. Vosniadou, S., & Ioannides, C. (1998). From conceptual change to science education: a psychological point of view. International Journal of Science Education, 20, 1213–1230.CrossRefGoogle Scholar
  80. Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 177–210). New York: Macmillan.Google Scholar
  81. West, L. H. T, & Pines A. L. (Eds.). (1985). Cognitive structure and conceptual change. Orlando FL: Academic Press.Google Scholar
  82. West, L., & Staub, F. C. (2003). Content-focused coaching: Transforming mathematics lessons. Portsmouth, NH: Heinemann/Pittsburgh, PA: University of Pittsburgh.Google Scholar
  83. Zembylas, M. (2005). Three perspectives on linking the cognitive and the emotional in science learning: Conceptual change, socio-constructivism and poststructuralism. Studies in Science Education, 41, 91–116.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Science and Mathematics Education CentreCurtin UniversityPerthAustralia
  2. 2.IPN—Leibniz Institute for Science Education at the University of KielKielGermany

Personalised recommendations