HSS Journal

, Volume 8, Issue 1, pp 7–9 | Cite as

Articular Cartilage Degradation in Osteoarthritis

HSS OSTEOARTHRITIS SYMPOSIUM: FRONTIERS IN OA

Keywords

osteoarthritis inflammation cartilage 

Notes

Acknowledgments

Dr. Goldring’s research is supported in part by National Institutes of Health Grants R01-AG022021, R21-AR054887, and RC4 AR060546.

Disclosure

The author certifies that she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article.

References

  1. 1.
    Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 2011;7:161–169.PubMedCrossRefGoogle Scholar
  2. 2.
    Campo GM, Avenoso A, Campo S, D'Ascola A, Nastasi G, Calatroni A. Molecular size hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes. Biochimie 2010;92:204–215.PubMedCrossRefGoogle Scholar
  3. 3.
    Echtermeyer F, Bertrand J, Dreier R, Meinecke I, Neugebauer K, Fuerst M, Lee YJ, Song YW, Herzog C, Theilmeier G, Pap T. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 2009;15:1072–1076.PubMedCrossRefGoogle Scholar
  4. 4.
    Garcia-Arnandis I, Guillen MI, Gomar F, Pelletier JP, Martel-Pelletier J, Alcaraz MJ. High mobility group box 1 potentiates the pro-inflammatory effects of interleukin-1beta in osteoarthritic synoviocytes. Arthritis Res Ther 2010;12:R165.PubMedCrossRefGoogle Scholar
  5. 5.
    Goldring MB, Otero M, Plumb DA, Dragomir C, Favero M, El Hachem K, Hashimoto K, Roach HI, Olivotto E, Borzi RM, Marcu KB. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater 2011;21:202–220.PubMedGoogle Scholar
  6. 6.
    Hashimoto K, Oreffo RO, Gibson MB, Goldring MB, Roach HI. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum 2009;60:3303–3313.PubMedCrossRefGoogle Scholar
  7. 7.
    Heinola T, Kouri VP, Clarijs P, Ciferska H, Sukura A, Salo J, Konttinen YT. High mobility group box-1 (HMGB-1) in osteoarthritic cartilage. Clin Exp Rheumatol 2010;28:511–518.PubMedGoogle Scholar
  8. 8.
    Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M, Thompson EW. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 2009;60:3723–3733.PubMedCrossRefGoogle Scholar
  9. 9.
    Little CB, Fosang AJ. Is cartilage matrix breakdown an appropriate therapeutic target in osteoarthritis—insights from studies of aggrecan and collagen proteolysis? Curr Drug Targets 2010;11:561–575.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu-Bryan R, Terkeltaub R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum 2010;62:2004–2012.PubMedGoogle Scholar
  11. 11.
    Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets 2010;11:599–613.PubMedCrossRefGoogle Scholar
  12. 12.
    Miranda KJ, Loeser RF, Yammani RR. Sumoylation and nuclear translocation of S100A4 regulate IL-1beta-mediated production of matrix metalloproteinase-13. J Biol Chem 2010;285:31517–31524.PubMedCrossRefGoogle Scholar
  13. 13.
    Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, Takada S, Lotz MK, Ueno-Kudo H, Asahara H. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 2010;24:1173–1185.PubMedCrossRefGoogle Scholar
  14. 14.
    Polur I, Lee PL, Servais JM, Xu L, Li Y. Role of HTRA1, a serine protease, in the progression of articular cartilage degeneration. Histol Histopathol 2010;25:599–608.PubMedGoogle Scholar
  15. 15.
    Rasheed Z, Akhtar N, Haqqi TM. Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-κB in human osteoarthritis chondrocytes. Rheumatology (Oxford) 2011;50(5):838–851.Google Scholar
  16. 16.
    van den Berg WB. Osteoarthritis year 2010 in review: pathomechanisms. Osteoarthritis Cartilage 2011;19:338–341.PubMedCrossRefGoogle Scholar
  17. 17.
    Xu L, Servais J, Polur I, Kim D, Lee PL, Chung K, Li Y. Attenuation of osteoarthritis progression by reduction of discoidin domain receptor 2 in mice. Arthritis Rheum 2010;62:2736–2744.PubMedCrossRefGoogle Scholar
  18. 18.
    Yang S, Kim J, Ryu JH, Oh H, Chun CH, Kim BJ, Min BH, Chun JS. Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med 2010;16:687–693.PubMedCrossRefGoogle Scholar
  19. 19.
    Zreiqat H, Belluoccio D, Smith MM, Wilson R, Rowley LA, Jones K, Ramaswamy Y, Vogl T, Roth J, Bateman JF, Little CB. S100A8 and S100A9 in experimental osteoarthritis. Arthritis Res Ther 2010;12:R16.PubMedCrossRefGoogle Scholar

Copyright information

© Hospital for Special Surgery 2012

Authors and Affiliations

  1. 1.Research DivisionHospital for Special SurgeryNew YorkUSA
  2. 2.BCMB: Cell and Developmental Biology ProgramWeill Cornell Graduate School of Medical SciencesNew YorkUSA

Personalised recommendations