HSS Journal

, Volume 8, Issue 1, pp 18–19

The Effects of Aging on the Development of Osteoarthritis

HSS Osteoarthritis Symposium: Frontiers in OA


osteoarthritis aging articular cartilage cell senescence 


  1. 1.
    Blaney Davidson EN, Remst DF, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol. 2009;182:7937–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010;62:791–801.PubMedCrossRefGoogle Scholar
  3. 3.
    Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90:1579–85.PubMedCrossRefGoogle Scholar
  4. 4.
    Dvir-Ginzberg M, Gagarina V, Lee EJ, Hall DJ. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008;283:36300–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16:238–46.PubMedCrossRefGoogle Scholar
  6. 6.
    Fujita N, Matsushita T, Ishida K, Kubo S, Matsumoto T, Takayama K, et al. Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res. 2011;29:511–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Goekoop RJ, Kloppenburg M, Kroon HM, Dirkse LE, Huizinga TW, Westendorp RG, et al. Determinants of absence of osteoarthritis in old age. Scand J Rheumatol. 2011;40:68–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Goekoop RJ, Kloppenburg M, Kroon HM, Frolich M, Huizinga TW, Westendorp RG, et al. Low innate production of interleukin-1beta and interleukin-6 is associated with the absence of osteoarthritis in old age. Osteoarthritis Cartilage. 2010;18:942–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Haigis MC, Yankner BA. The aging stress response. Mol Cell. 2010;40:333–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage. 2009;17:971–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011;208:417–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Taniguchi N, Carames B, Ronfani L, Ulmer U, Komiya S, Bianchi ME, et al. Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc Natl Acad Sci U S A. 2009;106:1181–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Terkeltaub R, Yang B, Lotz M, Liu-Bryan R. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to inflammatory cytokines IL-1beta and TNFalpha. Arthritis Rheum. 2011;63:1928–37.PubMedCrossRefGoogle Scholar
  14. 14.
    van der Kraan PM, Blaney Davidson EN, van den Berg WB. A role for age-related changes in TGFbeta signaling in aberrant chondrocyte differentiation and osteoarthritis. Arthritis Res Ther. 2010;12:201.PubMedCrossRefGoogle Scholar
  15. 15.
    Yin W, Park JI, Loeser RF. Oxidative stress inhibits insulin-like growth factor-I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-Kinase-Akt and MEK-ERK MAPK signaling pathways. J Biol Chem. 2009;284:31972–81.PubMedCrossRefGoogle Scholar

Copyright information

© Hospital for Special Surgery 2011

Authors and Affiliations

  1. 1.Section of Molecular MedicineWake Forest University School of MedicineWinston-SalemUSA

Personalised recommendations