HSS Journal ®

, Volume 7, Issue 2, pp 157–163 | Cite as

A Pre-Clinical Test Platform for the Functional Evaluation of Scaffolds for Musculoskeletal Defects: The Meniscus

  • Suzanne A. MaherEmail author
  • Scott A. Rodeo
  • Hollis G. Potter
  • Lawrence J. Bonassar
  • Timothy M. Wright
  • Russell F. Warren
Original Article


In an attempt to delay the progression of osteoarthritis from an index injury, early intervention via repair of injured musculoskeletal soft tissue has been advocated. Despite the development of a number of scaffolds intended to treat soft tissue defects, information about their functional performance is lacking. The goal of this study was to consolidate a suite of in vitro and in vivo models into a pre-clinical test platform to assess the functional performance of meniscal repair scaffolds. Our objective was to assess the ability of a scaffold (Actifit™; Orteq, UK) to carry load without detrimentally abrading against articular cartilage. Three test modules were used to assess the functional performance of meniscal repair scaffolds. The first module tested the ability of the scaffold to carry load in an in vitro model designed to measure the change in normal contact stress magnitude on the tibial plateau of cadaveric knees after scaffold implantation. The second module assessed the in vitro frictional coefficient of the scaffold against cartilage to assess the likelihood that the scaffold would destructively abrade against articular cartilage in vivo. The third module consisted of an assessment of functional performance in vivo by measuring the structure and composition of articular cartilage across the tibial plateau 12 months after scaffold implantation in an ovine model. In vitro, the scaffold improved contact mechanics relative to a partly meniscectomized knee suggesting that, in vivo, less damage would be seen in the scaffold implanted knees vs. partly meniscectomized knees. However, there was no significant difference in the condition of articular cartilage between the two groups. Moreover, in spite of the high coefficient of friction between the scaffold and articular cartilage, there was no significant damage in the articular cartilage underneath the scaffold. The discrepancy between the in vitro and in vivo models was likely influenced by the abundant tissue generated within the scaffold and the unexpected tissue that regenerated within the site of the partial meniscectomy. We are currently augmenting our suite of tests so that we can pre-clinically evaluate the functional performance at time zero and as a function of time after implantation.


meniscus scaffold knee cartilage 



This study was funded by Orteq Sports Medicine Ltd., London, UK. The research was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06-RR12538-01 from the National Center for Research Resources, NIH.


  1. 1.
    Agneskirchner JD, Hurschler C, Stukenborg-Colsman C, Imhoff AB, Lobenhoffer P. Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Arch Orthop Trauma Surg 2004; 124:575–84.CrossRefGoogle Scholar
  2. 2.
    Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, Yoo J. Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A. 2008 May;85(2):445–55.CrossRefGoogle Scholar
  3. 3.
    Arnoczky SP, Cook JL, Carter T, Turner S. Translational Models for Studying Meniscal Repair and Replacement: What they can and cannot tell us.Tissue Eng Part B Rev. 2009 Aug 21. (Epub ahead of print)Google Scholar
  4. 4.
    Aufderheide AC, Athanasiou KA (2007) Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng 13(9): 2195–205.CrossRefGoogle Scholar
  5. 5.
    Becker R, Wirz D, Wolf C, Göpfert B, Nebelung W, Friederich N (2005) Measurement of meniscofemoral contact pressure after repair of bucket-handle tears with biodegradable implants. Arch Orthop Trauma Surg 125(4):254–60. Epub 2004 Sep 7CrossRefGoogle Scholar
  6. 6.
    Brophy RH, Cottrell J, Rodeo SA, Wright TM, Warren RF, Maher SA. Implantation of a synthetic meniscal scaffold improves joint contact mechanics in a partial meniscectomy cadaver model. J Biomed Mater Res A. 2010 Mar 1;92(3):1154–61.PubMedGoogle Scholar
  7. 7.
    Burger C, Mueller M, Wlodarczyk P, Goost H, Tolba RH, Rangger C, Kabir K, Weber O. The sheep as a knee osteoarthritis model: early cartilage changes after meniscus injury and repair. Lab Anim. 2007 Oct;41(4):420–31.CrossRefGoogle Scholar
  8. 8.
    Chevrier A, Nelea M, Hurtig MB, Hoemann CD, Buschmann MD.Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair. J Orthop Res. 2009 Feb 25 (Epub ahead of print)Google Scholar
  9. 9.
    Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, Ambrosio L, Tognana E, Kon E, Salter D, Nehrer S (2006) A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage 14(10):1056–65. Epub 2006 May 30.CrossRefGoogle Scholar
  10. 10.
    Duffy GP, Crowder AR, Trousdale RR, Berry DJ. Cemented total knee arthroplasty using a modern prosthesis in young patients with osteoarthritis. J Arthroplasty. 2007 Sep;22(6 Suppl 2):67–70.CrossRefGoogle Scholar
  11. 11.
    Duffy GP, Trousdale RT, Stuart MJ (1998) Total knee arthroplasty in patients 55 years old or younger. 10- to 17-year results. Clin Orthop Relat Res 356:22–7.CrossRefGoogle Scholar
  12. 12.
    Gleghorn JP, Doty SB, Warren RF, Wright TM, Maher SA, Bonassar LJ (2010) Analysis of frictional behavior and changes in morphology resulting from cartilage articulation with porous polyurethane foams. J Orthop Res 28(10):1292–1299CrossRefGoogle Scholar
  13. 13.
    Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR. 2003. How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J. Biomech. 36(1):19–34.CrossRefGoogle Scholar
  14. 14.
    Heinlein B, Kutzner I, Graichen F, Bender A, Rohlmann A, Halder AM, Beier A, Bergmann G (2009) ESB Clinical Biomechanics Award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6–10 months. Clin Biomech (Bristol, Avon) 24(4): 315–26. Epub 2009 Mar 13.CrossRefGoogle Scholar
  15. 15.
    Hofmann AA, Heithoff SM, Camargo M. Cementless total knee arthroplasty in patients 50 years or younger. Clin Orthop Relat Res. 2002 Nov;(404):102–107.CrossRefGoogle Scholar
  16. 16.
    Kang SW, Son SM, Lee JS, Lee ES, Lee KY, Park SG, Park JH, Kim BS. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. J Biomed Mater Res A. 2006 Sep 1;78(3):659–71.CrossRefGoogle Scholar
  17. 17.
    Kelly BT, Robertson W, Potter HG, Deng XH, Turner AS, Lyman S, Warren RF, Rodeo SA (2007) Hydrogel meniscal replacement in the sheep knee: preliminary evaluation of chondroprotective effects. Am J Sports Med 35(1):43–52. Epub 2006 Sep 6.CrossRefGoogle Scholar
  18. 18.
    Kon E, Chiari C, Marcacci M, Delcogliano M, Salter DM, Martin I, Ambrosio L, Fini M, Tschon M, Tognana E, Plasenzotti R, Nehrer S. Tissue engineering for total meniscal substitution: animal study in sheep model. Tissue Eng Part A. 2008 Jun;14(6):1067–80.CrossRefGoogle Scholar
  19. 19.
    Kurosawa, H, Fukubayashi, T, Nakajima, H. 1980. Load-bearing mode of the knee joint. Clinical Orthopaedics and Related Research, 149:283–90.Google Scholar
  20. 20.
    Lee SJ, Aadalen KJ, Malaviya P, et al. (2006) Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 34:1334–44.CrossRefGoogle Scholar
  21. 21.
    Levy, IM, Torzilli, PA, Gould, JD, Warren, RF. 1989. The effect of lateral meniscectomy on motion of the knee. J Bone Joint Surg Am. 71(3):401–6.CrossRefGoogle Scholar
  22. 22.
    Levy, IM, Torzilli, PA, Warren, RF. 1982. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am. 64:883–8.CrossRefGoogle Scholar
  23. 23.
    Long JP, Santner TJ, Bartel DL. Hip resurfacing increases bone strains associated with short-term femoral neck fracture. J Orthop Res. 2009 Oct;27(10):1319–25.CrossRefGoogle Scholar
  24. 24.
    Maher SA, Rodeo SA, Doty SB, Brophy R, Potter H, Foo LF, Rosenblatt L, Deng XH, Turner AS, Wright TM, Warren RF. Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy. 2010 Nov;26(11):1510–9. Epub 2010 Sep 19.CrossRefGoogle Scholar
  25. 25.
    Martinek V, Ueblacker P, Bräun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB (2006) Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg. 126(4):228–34. Epub 2005 Oct 8.CrossRefGoogle Scholar
  26. 26.
    Messner, K., Gillquist, J. 1993. Prosthetic replacement of the rabbit medial meniscus. J Biomed Mater Res. 27:1165–73.CrossRefGoogle Scholar
  27. 27.
    Mündermann A, Dyrby CO, D’Lima DD, Colwell CW Jr, Andriacchi TP. In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J Orthop Res. 2008 Sep;26(9):1167–72.CrossRefGoogle Scholar
  28. 28.
    Rodkey WG (2000) Basic biology of the meniscus and response to injury. Instr Course Lect 49:189–93. Review.PubMedGoogle Scholar
  29. 29.
    Sheng PY, Konttinen L, Lehto M, Ogino D, Jämsen E, Nevalainen J, Pajamäki J, Halonen P, Konttinen YT. Revision total knee arthroplasty: 1990 through 2002. A review of the Finnish arthroplasty registry. J Bone Joint Surg Am. 2006 Jul;88(7):1425–30.PubMedGoogle Scholar
  30. 30.
    Tapper JE, Fukushima S, Azuma H, Thornton GM, Ronsky JL, Shrive NG, Frank CB. Dynamic in vivo kinematics of the intact ovine stifle joint. J Orthop Res. 2006 Apr;24(4):782–92.CrossRefGoogle Scholar
  31. 31.
    Testa Pezzin AP, Cardoso TP, do Carmo Alberto Rincón M, de Carvalho Zavaglia CA, de Rezende Duek EA (2003) Bioreabsorbable polymer scaffold as temporary meniscal prosthesis. Artif Organs 27(5):428–31.CrossRefGoogle Scholar
  32. 32.
    Vaziri A, Nayeb-Hashemi H, Singh A, Tafti BA (2008) Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint. Ann Biomed Eng 36(8):1335–44. Epub 2008 May 22.CrossRefGoogle Scholar
  33. 33.
    Weinand C, Peretti GM, Adams SB Jr, Bonassar LJ, Randolph MA, Gill TJ (2006) An allogenic cell-based implant for meniscal lesions. Am J Sports Med 34(11): 1779–89. Epub 2006 Jul 26.CrossRefGoogle Scholar
  34. 34.
    Wheaton AJ, Dodge GR, Borthakur A, Kneeland JB, Schumacher HR, Reddy R. Detection of changes in articular cartilage proteoglycan by T1 rho imaging. JOR 2005; 23: 102–108.CrossRefGoogle Scholar
  35. 35.
    Wood, DJ, Minns, RJ, Strover, A. 1990. Replacement of the rabbit medial meniscus with a polyester-carbon fibre bioprosthesis. Biomaterials 11:13–16.CrossRefGoogle Scholar

Copyright information

© Hospital for Special Surgery 2010

Authors and Affiliations

  • Suzanne A. Maher
    • 1
    Email author
  • Scott A. Rodeo
    • 1
  • Hollis G. Potter
    • 1
  • Lawrence J. Bonassar
    • 1
  • Timothy M. Wright
    • 1
  • Russell F. Warren
    • 1
  1. 1.Hospital for Special SurgeryNew YorkUSA

Personalised recommendations