Forensic Toxicology

, Volume 37, Issue 1, pp 254–260 | Cite as

Use of polysaccharide-based chiral columns: enantiomeric separation of seven pairs of abused drugs by high-performance liquid chromatography–mass spectrometry

  • Tajudheen K. Karatt
  • Abdul Khader Karakka KalEmail author
  • Ramy Sayed
  • Jahfar Nalakath
  • Zubair Perwad
Letter to the Editor

Dear Editor

The International Federation of Horse Racing Authorities has published a list of prohibited substances [1], which includes corticosteroids [2, 3], anabolic steroids [4, 5, 6, 7], diuretics [8, 9], central nervous system stimulants [10], β-adrenergic receptor blocking agents [11], narcotics [12], antiestrogens, polypeptide hormones [13], etc. The physiochemical and biochemical properties of racemic mixtures and individual isomers differ significantly, prompting us to study their chiral separation and determination. Chiral substances possess a unique feature: despite sharing identical molecular formulae, atom-to-atom linkages, and bonding distances, they cannot be superimposed [14]. It is obvious that in living systems, specific structure-to-activity relationships are required for effective actions on targets (e.g., receptors, enzymes, transporters, DNA, etc.). The physiochemical and biochemical properties of racemic mixtures can differ significantly from those of the...



The authors are thankful to Dr. Ali Ridha, Director General, (Central Veterinary Research Laboratory) for the valuable suggestions and support. We acknowledge the support and assistance of the Equine Forensic Unit management and staff in this project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    The International Federation for Equestrian Sports (2018) The FEI equine prohibited substances database. Accessed 6 Aug 2018
  2. 2.
    The United States Pharmacopeial Convention (2008) Corticosteroids—glucocorticoid effects (veterinary-systemic). Accessed 6 Aug 2018
  3. 3.
    Gibson T, Burry HC, Poswillo D, Glass J (1977) Effect of intra-articular corticosteroid injections on primate cartilage. Ann Rheum Dis 36:74–79CrossRefGoogle Scholar
  4. 4.
    Evans NA (2004) Current concepts in anabolic-androgenic steroids. Am J Sports Med 32:534–542CrossRefGoogle Scholar
  5. 5.
    Kuhn CM (2002) Anabolic steroids. Recent Prog Horm Res 57:411–434CrossRefGoogle Scholar
  6. 6.
    Craig CR, Stitzel RE (2004) Modern pharmacology with clinical applications, 6th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  7. 7.
    Godwin M, Dawes M (2004) Intra-articular steroid injections for painful knees. Systematic review with meta-analysis. Can Fam Physician 50:241–248Google Scholar
  8. 8.
    Breyer J, Jacobson HR (1990) Molecular mechanisms of diuretic agents. Annu Rev Med 41:265–275CrossRefGoogle Scholar
  9. 9.
    Brater DC (1983) Pharmacodynamic considerations in the use of diuretics. Annu Rev Pharmacol Toxicol 23:45–62CrossRefGoogle Scholar
  10. 10.
    Goyal RK, Hirano I (1996) Mechanisms of disease: the enteric nervous system. N Engl J Med 334:1106–1115CrossRefGoogle Scholar
  11. 11.
    Majewski H (1983) Modulation of noradrenaline release through activation of presynaptic β-adrenoreceptors. J Auton Pharmacol 3:47–60CrossRefGoogle Scholar
  12. 12.
    Davis E, Loiacono R, Summers RJ (2009) The rush to adrenaline: drugs in sport acting on the β-adrenergic system. Br J Pharmacol 154:584–597CrossRefGoogle Scholar
  13. 13.
    Franchimont P, Gaspard U, Reuter A, Heynen G (1972) Polymorphism of protein and polypeptide hormones. Clin Endocrinol 4:315–336CrossRefGoogle Scholar
  14. 14.
    Ali I, Gupta VK, Aboul-Enein HY, Singh P, Sharma B (2007) Role of racemization in optically active drugs development. Chirality 19:453–463CrossRefGoogle Scholar
  15. 15.
    Adams J (1993) Structure–activity and dose–response relationships in the neural and behavioral teratogenesis of retinoids. Neurotoxicol Teratol 15:193–202CrossRefGoogle Scholar
  16. 16.
    Agranat I, Caner H, Caldwell J (2002) Putting chirality to work: the strategy of chiral switches. Nat Rev Drug Discov 1:753–768CrossRefGoogle Scholar
  17. 17.
    Andrews JE, Ebron-McCoy M, Bojic U, Nau H, Kavlock RJ (1995) Validation of an in vitro teratology system using chiral substances: stereo selective teratogenicity of 4-yn-valproic acid in cultured mouse embryos. Toxicol Appl Pharmacol 132:310–316CrossRefGoogle Scholar
  18. 18.
    Anonymous (1997) Fenfluramine and dexfenfluramine withdrawn from market. Am J Health Syst Pharm 54:2260–2269Google Scholar
  19. 19.
    Oh SS, Hess O (2015) Chiral metamaterials: enhancement and control of optical activity and circular dichroism. Nano Converg 2:24. CrossRefGoogle Scholar
  20. 20.
    Cahn RS, Ingold C, Prelog V (1956) The specification of asymmetric configuration in organic chemistry. Experientia 12:81–94CrossRefGoogle Scholar
  21. 21.
    Smith SW (2009) Chiral toxicology: it’s the same thing…only different. Toxicol Sci 110:4–30CrossRefGoogle Scholar
  22. 22.
    Tripathi K (1993) Drug enantiomers and their pharmacological implications. Ind J Pharmacol 25:73–77Google Scholar
  23. 23.
    Porter WH (1991) Resolution of chiral drugs. Pure Appl Chem 63:1119–1122CrossRefGoogle Scholar
  24. 24.
    Burke D, Henderson DJ (2002) Chirality: a blueprint for the future. Br J Anaesth 88:563–576CrossRefGoogle Scholar
  25. 25.
    Ariens EJ (1984) Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. Eur J Clin Pharmacol 26:663–668CrossRefGoogle Scholar
  26. 26.
    Ribeiro C, Santos C, Gonçalves V, Ramos A, Afonso C, Tiritan ME (2018) Chiral drug analysis in forensic chemistry: an overview. Molecules 23:262. CrossRefGoogle Scholar
  27. 27.
    Taschwer M, Grascher J, Schmid MG (2016) Development of an enantioseparation method for novel psychoactive drugs by HPLC using a Lux® Cellulose-2 column in polar organic phase mode. Forensic Sci Int 270:232–240CrossRefGoogle Scholar
  28. 28.
    Hegstad S, Havnen H, Helland A, Spigset O, Frost J (2018) Enantiomeric separation and quantification of R/S-amphetamine in urine by ultra-high performance supercritical fluid chromatography tandem mass spectrometry. J Chromatogr B 1077-1078:7–12CrossRefGoogle Scholar
  29. 29.
    Doi T, Tagami T, Takeda A, Asada A, Sawabe Y (2018) Evaluation of carboxamide-type synthetic cannabinoids as CB1/CB2 receptor agonists: difference between the enantiomers. Forensic Toxicol 36:51–60CrossRefGoogle Scholar
  30. 30.
    Karatt TK, Nalakath J, Perwad Z, Albert PH, Khader KKA, Padusha MSA, Laya S (2018) Mass spectrometric method for distinguishing isomers of dexamethasone via fragment mass ratio: an HRMS approach. J Mass Spectrom 53:1046–1058CrossRefGoogle Scholar
  31. 31.
    Peng L, Jayapalan S, Chankvetadze B, Farkas T (2010) Reversed-phase chiral HPLC and LC/MS analysis with tris(chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. J Chromatogr A 1217:6942–6955CrossRefGoogle Scholar
  32. 32.
    Tachibana K, Ohnishi A (2001) Reversed-phase liquid chromatographic separation of enantiomers on polysaccharide type chiral stationary phases. J Chromatogr A 906:127–154CrossRefGoogle Scholar
  33. 33.
    Karatt TK, Sayed R, Nalakath J, Perwad Z, Albert PH, Abdul Khader KK (2018) Separation and identification of the epimeric doping agents—dexamethasone and betamethasone in equine urine and plasma: a reversed phase chiral chromatographic approach. Steroids 140:77–82CrossRefGoogle Scholar
  34. 34.
    Barhate CL, Wahab MF, Breitbach ZS, Bell DS, Armstrong DW (2015) High efficiency, narrow particle size distribution, sub-2 μm based macrocyclic glycopeptide chiral stationary phases in HPLC and SFC. Anal Chim Acta 898:128–137CrossRefGoogle Scholar
  35. 35.
    Dolzan MD, Shu Y, Smuts JP, Petersen H, Ellegaard P, Micke GA, Armstrong DW, Breitbach ZS (2016) Enantiomeric separation of citalopram analogues by HPLC using macrocyclic glycopeptide and cyclodextrin based chiral stationary phases. J Liq Chromatogr Relat Technol 39:154–160CrossRefGoogle Scholar
  36. 36.
    Kosel M, Eap CB, Amey M, Baumann P (1998) Analysis of the enantiomers of citalopram and its demethylated metabolites using chiral liquid chromatography. J Chromatogr B 719:234–238CrossRefGoogle Scholar
  37. 37.
    Matthijs N, Perrin C, Maftouh M, Massart DL, Vander Heyden Y (2004) Definition and system implementation of strategies for method development of chiral separations in normal-or reversed-phase liquid chromatography using polysaccharide-based stationary phases. J Chromatogr A 1041:119–133CrossRefGoogle Scholar
  38. 38.
    Padivitage NL, Dodbiba E, Breitbach ZS, Armstrong DW (2014) Enantiomeric separations of illicit drugs and controlled substances using cyclofructan-based (LARIHC) and cyclobond I 2000 RSP HPLC chiral stationary phases. Drug Test Anal 6:542–551CrossRefGoogle Scholar
  39. 39.
    Geryk R, Kalíková K, Vozka J, Tesarˇová E (2013) Immobilized polysaccharide-based stationary phases for enantioseparation in normal versus reversed phase HPLC. Chromatographia 76:483–489CrossRefGoogle Scholar
  40. 40.
    USP (1978) The United States Pharmacopeia, 20th revision. The United States Pharmacopeia, Washington, DC, p 943Google Scholar
  41. 41.
    Perrin C, Vu VA, Matthijs N, Maftouh M, Massart DL, Vander Heyden Y (2002) Screening approach for chiral separation of pharmaceuticals: Part I. Normal-phase liquid chromatography. J Chromatogr A 947:69–83CrossRefGoogle Scholar

Copyright information

© Japanese Association of Forensic Toxicology and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Equine Forensic UnitCentral Veterinary Research LaboratoryDubaiUnited Arab Emirates

Personalised recommendations