Forensic Toxicology

, Volume 32, Issue 1, pp 154–161 | Cite as

Simultaneous determination of tryptamine analogues in designer drugs using gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry

  • Yukiko Nakazono
  • Kenji Tsujikawa
  • Kenji Kuwayama
  • Tatsuyuki Kanamori
  • Yuko T. Iwata
  • Kazuna Miyamoto
  • Fumiyo Kasuya
  • Hiroyuki Inoue
Short Communication


In recent years, a large number of tryptamine-based designer drugs have been encountered in forensic samples. We have developed simultaneous analytical methods for 14 tryptamine analogues using gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–tandem mass spectrometry (LC–MS–MS). Trimethylsilyl (TMS) derivatives of the analytes were separated on a DB-1ms column within 15 min. The structural isomers could be differentiated by electron ionization GC–MS. LC–MS–MS with a C18 column could separate structural isomers of tryptamines except for a combination of 5-methoxy-N,N-diethyltryptamine and 5-methoxy-N-methyl-N-isopropyltryptamine. Higher collision energy gave different product ion spectra between the structural isomers. The results indicate that GC–MS is the first choice for identification of tryptamines, preferably after TMS derivatization, and LC–MS–MS can be used as a complementary approach for the unequivocal differentiation of tryptamine isomers.


Tryptamine analogues Designer drug Structural isomer GC–MS LC–MS–MS 



This work was supported in part by the R&D Program for Implementation of Anti-Crime and Anti-Terrorism Technologies for a Safe and Secure Society, Funds for Integrated Promotion of Social System Reform and Research and Development of the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.


  1. 1.
    Namera A, Nakamoto A, Saito T, Nagao M (2011) Colorimetric detection and chromatographic analyses of designer drugs in biological materials: a comprehensive review. Forensic Toxicol 29:1–24CrossRefGoogle Scholar
  2. 2.
    Zaitsu K, Katagi M, Tatsuno M, Sato T, Tsuchihashi H, Suzuki K (2011) Recently abused β-keto derivatives of 3, 4-methylenedioxyphenylalkylamines: a review of their metabolisms and toxicological analysis. Forensic Toxicol 29:73–84CrossRefGoogle Scholar
  3. 3.
    Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan until early 2012. Forensic Toxicol 31:44–53CrossRefGoogle Scholar
  4. 4.
    Nakazono Y, Tsujikawa K, Kuwayama K, Kanamori T, Iwata YT, Miyamoto K, Kasuya F, Inoue H (2013) Differentiation of regioisomeric fluoroamphetamine analogs by gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry. Forensic Toxicol 31:241–250CrossRefGoogle Scholar
  5. 5.
    Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2013) Two-new type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative α-PVT and an opioid receptor agonist AH-7921 identified in illegal products. Forensic Toxicol 31:223–240CrossRefGoogle Scholar
  6. 6.
    Zuba D, Geppert B, Sekuła K, Żaba C (2013) [1-(Tetrahydropyran-4-ylmethyl)-1H-indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone: a new synthetic cannabinoid identified on the drug market. Forensic Toxicol 31:281–291CrossRefGoogle Scholar
  7. 7.
    Saito T, Namera A, Osawa M, Aoki H, Inokuchi S (2013) SPME–GC–MS analysis of α-pyrrolidinovaleorophenone in blood in a fatal poisoning case. Forensic Toxicol 31:328–332CrossRefGoogle Scholar
  8. 8.
    Namera A, Urabe S, Saito T, Torikoshi-Hatano A, Shiraishi H, Arima Y, Nagao M (2013) A fatal case of 3,4-methylenedioxypyrovalerone poisoning: coexistence of α-pyrrolidinobutiophenone and α-pyrrolidinovalerophenone in blood and/or hair. Forensic Toxicol 31:338–343CrossRefGoogle Scholar
  9. 9.
    Kikura-Hanajiri R, Kawamura M, Uchiyama N, Ogata J, Kamakura H, Saisho K, Goda Y (2008) Analytical data of designated substances (shitei-yakubutsu) controlled by the pharmaceutical affairs law in Japan, Part 1: GC–MS and LC–MS (in Japanese with English abstract). Yakugaku Zasshi 128:971–979PubMedCrossRefGoogle Scholar
  10. 10.
    Hsiao Y, Liu JT, Lin CH (2009) Simultaneous separation and detection of 18 phenethylamine/tryptamine derivatives by liquid chromatography-UV absorption and -electrospray ionization mass spectrometry. Anal Sci 25:759–763PubMedCrossRefGoogle Scholar
  11. 11.
    Kikura-Hanajiri R, Hayashi M, Saisho K, Goda Y (2005) Simultaneous determination of nineteen hallucinogenic tryptamine/β-calbolines and phenethylamines using gas chromatography-mass spectrometry and liquid chromatography-electrospray ionization-mass spectrometry. J Chromatogr B 825:29–37CrossRefGoogle Scholar
  12. 12.
    Ishida T, Kudo K, Inoue H, Tsuji A, Kojima T, Ikeda N (2006) Rapid screening for and simultaneous semiquantitative analysis of thirty abused drugs in human urine samples using gas chromatography-mass spectrometry. J Anal Toxicol 30:468–477PubMedCrossRefGoogle Scholar
  13. 13.
    Wang MJ, Liu JT, Chen HM, Lin JJ, Lin CH (2008) Comparison of the separation of nine tryptamine standards based on gas chromatography, high performance liquid chromatography and capillary electrophoresis methods. J Chromatogr A 1181:131–136PubMedCrossRefGoogle Scholar
  14. 14.
    Takahashi M, Nagashima M, Suzuki J, Seto T, Yasuda I, Yoshida T (2008) Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography-mass spectrometry. J Health Sci 54(1):89–96CrossRefGoogle Scholar
  15. 15.
    Vorce SP, Sklerov JH (2004) A general screening and confirmation approach to the analysis of designer tryptamines and phenethylamines in blood and urine using GC-EI-MS and HPLC-electrospray-MS. J Anal Toxicol 28:407–410PubMedCrossRefGoogle Scholar
  16. 16.
    Shulgin AT, Shulgin A (1997) TiHKAL: the continuation. Transform Press, BerkeleyGoogle Scholar
  17. 17.
    Shulgin AT, Shulgin A (2004) Erowid, CA
  18. 18.
    Kanamori T, Kuwayama K, Tsujikawa K, Miyaguchi H, Iwata Y, Inoue H, Kishi T (2006) In vivo metabolism of 5-methoxy-N,N-diisopropyltryptamine in rat. J Health Sci 52:425–430CrossRefGoogle Scholar
  19. 19.
    Rösner P, Quednow B, Girreser U, Junge T (2005) Isomeric fluoro-methoxy-phenylalkylamines: a new series of controlled-substance analogues (designer drugs). Forensic Sci Int 148:143–156PubMedCrossRefGoogle Scholar
  20. 20.
    Brandt SD, Freeman S, Fleet IA, McGagh P, Alder JF (2005) Analytical chemistry of synthetic routes to psychoactive tryptamines Part II. Characterisation of the Speeter and Anthony synthetic route to N,N-dialkylated tryptamines using GC-EI-ITMS, ESI-TQ-MS–MS and NMR. Analyst 130:330–344PubMedCrossRefGoogle Scholar
  21. 21.
    Kurita H, Bito T, Mizuno K, Kamimura M, Maeda Y, Nishizawa M (2008) Rapid analysis of drugs in health foods using LC/MS (2)—Study of application to chemical drugs and fatty foods. Bull Shizuoka Inst Environ Hyg 51:21–25 (in Japanese)Google Scholar
  22. 22.
    Rodriguez-Cruz SE (2005) Analysis and characterization of designer tryptamines using electrospray ionization mass spectrometry (ESI-MS). Microgram J 3:107–129Google Scholar

Copyright information

© Japanese Association of Forensic Toxicology and Springer Japan 2013

Authors and Affiliations

  • Yukiko Nakazono
    • 1
    • 2
  • Kenji Tsujikawa
    • 1
  • Kenji Kuwayama
    • 1
  • Tatsuyuki Kanamori
    • 1
  • Yuko T. Iwata
    • 1
  • Kazuna Miyamoto
    • 2
    • 3
  • Fumiyo Kasuya
    • 3
  • Hiroyuki Inoue
    • 1
  1. 1.National Research Institute of Police ScienceKashiwaJapan
  2. 2.Hitec, Inc.ChibaJapan
  3. 3.Biochemical Toxicology Laboratory, Faculty of Pharmaceutical SciencesKobegakuin UniversityKobeJapan

Personalised recommendations