Forensic Toxicology

, Volume 28, Issue 1, pp 9–18 | Cite as

Simultaneous analysis of six novel hallucinogenic (tetrahydrobenzodifuranyl)aminoalkanes (FLYs) and (benzodifuranyl)aminoalkanes (DragonFLYs) by GC-MS, LC-MS, and LC-MS-MS

  • Kei Zaitsu
  • Munehiro Katagi
  • Hiroe Kamata
  • Keiko Nakanishi
  • Noriaki Shima
  • Tooru Kamata
  • Hiroshi Nishioka
  • Akihiro Miki
  • Michiaki Tatsuno
  • Hitoshi Tsuchihashi
Original Article

Abstract

Six novel hallucinogens classed as (tetrahydrobenzodifuranyl) aminoalkanes or (benzodifuranyl)aminoalkanes, which are known by the common names of “FLY” and “DragonFLY,” respectively, were synthesized. These compounds were simultaneously analyzed by gas chromatography (GC)-mass spectrometry (MS), liquid chromatography (LC)-MS, and LC-MS-MS. GCMS analysis of their free bases was not satisfactory for both mass spectral and chromatographic measurements, and thus trifluoroacetyl (TFA) derivatization was employed. However, it was found that the usual TFA derivatization procedure using trifluoroacetic anhydride caused dehydrogenation of FLYs to the corresponding DragonFLYs. Therefore, TFA derivatization of FLYs was reinvestigated; the presence of triethylamine could almost inhibit such dehydrogenation. LC separation of the analytes was successfully achieved by using a phenyl-type semimicro column with methanol gradient elution, while 1-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b;4,5-b′]difuran-4-yl)-2-methylaminopropane (N-methyl-DOB-FLY) and 1-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b;4,5-b′]difuran-4-yl)-2-aminopropane (DOB-FLY) were not separated on an octadecylsilica (ODS)-type column. Specific product ion spectra for all compounds were also obtained using LC-MS-MS, which enabled sensitive and reliable identification.

Keywords

(Tetrahydrobenzodifuranyl)aminoalkanes (Benzodifuranyl)aminoalkanes FLY DragonFLY Hallucinogen MS analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Monte AP, Waldman SR, Marona-Lewicka D, Wainscott DB, Nelson DL, Sanders-Bush E, Nichols DE (1997) Dihydrobenzofuran analogues of hallucinogens. 4. Mescaline derivatives. J Med Chem 40:2997–3008CrossRefPubMedGoogle Scholar
  2. 2.
    Parker MA, Marona-Lewicka D, Lucaites VL, Nelson DL, Nichols DE (1998) A novel (benzodifuranyl)aminoalkane with extremely potent activity at the 5-HT2A receptor. J Med Chem 41:5148–5149CrossRefPubMedGoogle Scholar
  3. 3.
    Chambers JJ, Kurrasch-Orbaugh DM, Parker MA, Nichols DE (2001) Enantiospecific synthesis and pharmacological evaluation of a series of super-potent, conformationally restricted 5-HT2A/2C receptor agonists. J Med Chem 44:1003–1010CrossRefPubMedGoogle Scholar
  4. 4.
    Reed EC, Kiddon GS (2007) The characterization of three FLY compounds (2C-B-FLY, 3C-B-FLY, and Bromo-DragonFLY). Microgram J 5:26–33Google Scholar
  5. 5.
    Anonymous (2007) “Bromo dragonfly” (bromo-benzodifuranyl-isopropylamine) in Ashland, Oregon. Microgram Bull 40:78Google Scholar
  6. 6.
    Anonymous (2008) “Bromo-Dragonfly” in Queensland, Australia. Microgram Bull 41:16–17Google Scholar
  7. 7.
    Erowid (2009) The vaults of Erowid. http://www.erowid.org/chemicals/bromo_dragonfly/bromo_dragonfly.shtml. Cited August 2009
  8. 8.
    Andreasen MF, Telving R, Birkler RID, Schumacher B, Johannsen M (2009) A fatal poisoning involving Bromo-Dragonfly. Forensic Sci Int 183:91–96CrossRefPubMedGoogle Scholar
  9. 9.
    Monte AP, Marona-Lewicka D, Parker MA, Wainscott DB, Nelson DL, Nichols DE (1996) Dihydrobenzofuran analogues of hallucinogens. 3. Models of 4-substituted (2,5-dimethoxyp henyl)alkylamine derivatives with rigidified methoxy groups. J Med Chem 39:2953–2961CrossRefPubMedGoogle Scholar
  10. 10.
    Pizarro N, de la Torre R, Farré M, Segura J, Llebaria A, Joglar J (2002) Synthesis and capillary electrophoretic analysis of enantiomerically enriched reference standards of MDMA and its main metabolites. Bioorg Med Chem 10:1085–1092CrossRefPubMedGoogle Scholar
  11. 11.
    Zaitsu K, Katagi M, Kamata H, Kamata T, Shima N, Miki A, Iwamura T, Tsuchihashi H (2008) Discrimination and identification of the six aromatic positional isomers of trimethoxyamphetamine (TMA) by gas chromatography-mass spectrometry (GC-MS). J Mass Spectrom 43:528–534CrossRefPubMedGoogle Scholar
  12. 12.
    Zaitsu K, Katagi M, Kamata HT, Miki A, Tsuchihashi H (2008) Discrimination and identification of regioisomeric β-keto analogues of 3,4-methylenedioxyamphetamines by gas chromatography-mass spectrometry. Forensic Toxicol 26:45–51CrossRefGoogle Scholar
  13. 13.
    Kovats ES (1965) Gas chromatographic characterization of organic substances in the retention index system. Adv Chromatogr 1:229–247Google Scholar
  14. 14.
    Kanamori T, Iwata Y, Ohmae Y, Inoue H, Kishi T (2001) Analysis of 2,5-dimethoxy-4-alkylthiophenethylamines (2CT-analogs) (in Japanese). Jpn J Sci Technol Iden 5:97–103CrossRefGoogle Scholar
  15. 15.
    McLafferty FW, Turecek F (1993) Interpretation of mass spectra, 4th edn. University Science, Mill Valley, CAGoogle Scholar
  16. 16.
    Smith RM, Busch KL (1999) Understanding mass spectra—a basic approach. Wiley, New YorkGoogle Scholar
  17. 17.
    Katagi M, Tsutsumi H, Miki A, Nakajima K, Tsuchihashi H (2002) Analyses of clandestine tablets of amphetamine and their related designer drugs encountered in recent Japan. Jpn J Forensic Toxicol 20:303–319Google Scholar
  18. 18.
    Zaitsu K, Katagi M, Kamata T, Kamata H, Shima N, Tsuchihashi H, Hayashi T, Kuroki H, Matoba R (2008) Determination of a newly encountered designer drug “pmethoxyethylamphetamine” and its metabolites in human urine and blood. Forensic Sci Int 177:77–84CrossRefPubMedGoogle Scholar
  19. 19.
    Zaitsu K, Katagi M, Kamata HT, Kamata T, Shima N, Miki A, Tsuchihashi H, Yasushige M (2009) Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci Int 188: 131–139CrossRefPubMedGoogle Scholar
  20. 20.
    Kanai K, Takekawa K, Kumamoto T, Ishikawa T, Ohmori T (2008) Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC-MS, and GC-MS. Forensic Toxicol 26:6–12CrossRefGoogle Scholar
  21. 21.
    Takayama N, Hayakawa K (2005) Amphetamines and their metabolites. In: Suzuki O, Watanabe K (eds) Drugs and poisons in humans: a handbook of practical analysis. Springer, Berlin Heidelberg New York, pp 171–185CrossRefGoogle Scholar
  22. 22.
    Patai S (1974) The chemistry of the quinonoid compounds. Wiley, New YorkGoogle Scholar
  23. 23.
    Kamata HT, Shima N, Zaitsu K, Kamata T, Miki A, Nishikawa M, Katagi M, Tsuchihashi H (2006) Metabolism of the recently encountered designer drug, methylone in humans and rats. Xenobiotica 36:709–723CrossRefPubMedGoogle Scholar
  24. 24.
    Kamata HT, Shima N, Zaitsu K, Kamata T, Nishikawa M, Katagi M, Miki A, Tsuchihashi H (2007) Simultaneous analysis of new designer drug, methylone, and its metabolites in urine by gas chromatography-mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry. Jpn J Forensic Sci Technol 12:97–106CrossRefGoogle Scholar
  25. 25.
    Shima N, Katagi M, Kamata H, Zaitsu K, Kamata T, Miki A, Tsuchihashi H, Sakuma T, Nemoto N (2008) Conjugates of p-hydroxymethamphetamine and 4-hydroxy-3-methoxymethamphetamine in blood obtained from methamphetamine and 3,4-methylendioxymethamphetamine users: analysis by LC-MS-MS. Forensic Toxicol 26:58–65CrossRefGoogle Scholar
  26. 26.
    Maurer HH (1998) Liquid chromatography-mass spectrometry in forensic and clinical toxicology. J Chromatogr B 713: 3–25CrossRefGoogle Scholar
  27. 27.
    Smith ML, Vorce SP, Holler JM, Shimomura E, Magluilo J, Jacobs AJ, Huestis MA (2007) Modern instrumental methods in forensic toxicology. J Anal Toxicol 31:237–253PubMedGoogle Scholar
  28. 28.
    Decaestecjer T, De Letter E, Clauwaert K, Bouche MP, Lambert W, Van Bocxlaer J, Piette M, Van den Eeckhout E, Van Peteghem C, De Leenheer A (2001) Fatal 4-MTA intoxication: development of a liquid chromatographic-tandem mass spectrometric assay for multiple matrices. J Anal Toxicol 25:705–710Google Scholar

Copyright information

© Japanese Association of Forensic Toxicology 2009

Authors and Affiliations

  • Kei Zaitsu
    • 1
  • Munehiro Katagi
    • 1
  • Hiroe Kamata
    • 1
  • Keiko Nakanishi
    • 1
  • Noriaki Shima
    • 1
  • Tooru Kamata
    • 1
  • Hiroshi Nishioka
    • 1
  • Akihiro Miki
    • 1
  • Michiaki Tatsuno
    • 1
  • Hitoshi Tsuchihashi
    • 1
  1. 1.Forensic Science LaboratoryOsaka Prefectural Police HQOsakaJapan

Personalised recommendations