Skip to main content
Log in

One-pot enantioselective synthesis of (S)-spirobrassinin and non-natural (S)-methylspirobrassinin from amino acids using a turnip enzyme

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The enantioselective synthesis of (S)-(−)-spirobrassinin, which features a unique sulfur-containing spirooxindole skeleton, was achieved by focusing on the phytoalexin generation in Brassicaceae plants. Specifically, (S)-(−)-spirobrassinin was obtained in a one-pot fashion from l-tryptophan through a reaction involving S-spirocyclization with various turnip enzymes and constituents, i.e., using the turnip as a reaction reagent, catalyst, and reaction vessel. Surprisingly, this strategy also enabled the one-pot enantioselective synthesis of the novel non-natural spirooxindole (S)-(−)-5-methylspirobrassinin from 5-methyl-dl-tryptophan.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takasugi M, Monde K, Katsui N, Shirata A (1987) Spirobrassinin, A Novel Sulfur-​containing Phytoalexin from the Daikon Raphanus sativus L. var. hortensis (Cruciferae). Chem Lett:1631–1632

  2. Monde K, Osawa S, Harada N, Takasugi M, Suchy M, Kutschy P, Dzurilla M, Balentova E (2000) Synthesis and absolute stereochemistry of cruciferous phytoalexine, (–)-spirobrassinin. Chem Lett:886–887

  3. Suchy M, Kutschy P, Monde K, Goto H, Harada N, Takasugi M, Dzurilla M, Balentová E (2001) Synthesis, absolute configuration, and enantiomeric enrichment of a cruciferous oxindole phytoalexin, (S)​-​(–)​-​spirobrassinin, and its oxazoline analog. J Org Chem 66:3940–3947

    Article  CAS  Google Scholar 

  4. Ye N, Chen H, Wold EA, Shi PY, Zhou J (2016) Therapeutic potential of spirooxindoles as antiviral agents. ACS Infect Dis 2:382–392

    Article  CAS  Google Scholar 

  5. Pilátová M, Šarišský M, Kutschy P, Miroššay A, Mezencev R, Čurillová Z, Suchý M, Monde K, Mirossay L, Mojžiš J (2005) Cruciferous phytoalexins: antiproliferative effects in T-Jurkat leukemic cells. Leuk Res 29:415–421

    Article  Google Scholar 

  6. Mezencev R, Galizzi M, Kutschy P, Docampo R (2009) Trypanosoma cruzi: antiproliferative effect of indole phytoalexins on intracellular amastigotes in vitro. Exp Parasitol 122:66–69

    Article  CAS  Google Scholar 

  7. Kristofikova Z, Gazova Z, Siposova K, Bartos A, Ricny J, Kotoucova J, Sirova J, Ripova D (2014) Effects of ferrofluid and phytoalexin spirobrassinin on thioflavin-t-based fluorescence in cerebrospinal fluid of the elderly and multiple sclerosis patients. Neurochem Res 39:1502–1510

    Article  CAS  Google Scholar 

  8. Kutschy P, Suchý M, Monde K, Harada N, Marušková R, Čurillová Z, Dzurilla M, Miklošová M, Mezencev R, Mojžiš J (2002) Spirocyclization strategy toward indole phytoalexins. The first synthesis of (±)-1-methoxyspirobrassinin, (±)-1-methoxyspirobrassinol, and (±)-1-methoxyspirobrassinol methyl ether. Tetrahedron Lett 43:9489–9492

    Article  CAS  Google Scholar 

  9. Pedras MSC, Suchy M, Ahiahonu PWK (2006) Unprecedented chemical structure and biomimetic synthesis of erucalexin, a phytoalexin from the wild crucifer Erucastrum gallicum. Org Biomol Chem 4:691–701

    Article  CAS  Google Scholar 

  10. Zhang Y, Li ZJ, Xu HS, Zhang Y, Wang W (2011) Organic asymmetric henry reaction of isatins: highly enantioselective synthesis of 3-hydroxy-2-oxindoles. RSC Adv 1:389–392

    Article  Google Scholar 

  11. Liu L, Zhang S, Xue F, Lou G, Zhang H, Ma S, Duan W, Wang W (2011) Catalytic enantioselective henry reactions of isatins: application in the concise synthesis of (s)-(–)-spirobrassinin. Chem Eur J 17:7791–7795

    Article  CAS  Google Scholar 

  12. Budovská M (2014) A novel palladium-catalyzed catalyzed cyclization of indole phytoalexin brassinin and its 1-substituted derivatives. RSC Adv 4:5575–5582

    Article  Google Scholar 

  13. Zhu G, Bao G, Li Y, Sun W, Li J, Hong L, Wang R (2017) Efficient catalytic kinetic of spiro-epoxyoxindoles with concomitant asymmetric friedel-crafts alkylation of indoles. Angew Chem Int Ed 56:5332–5335

    Article  CAS  Google Scholar 

  14. Budovská M, Tischlerová V, Mojžiš J, Harvanová M, Kozlov O, Gondová T, Tomášková N (2017) 2′-Aminoanalogues of the cruciferous phytoalexins spirobrassinin, 1-methoxyspirobrassinin and 1-methoxyspirobrassinol methyl ether: synthesis and anticancer properties. Tetrahedron 73:6356–6371

    Article  Google Scholar 

  15. Monde K, Takasugi M (1991) Biosynthesis of cruciferous phytoalexins: the involvement of a molecular rearrangement in the biosynthesis of brassinin. J Chem Soc Chem Commun:1582–1583

  16. Monde K, Takasugi M, Ohnishi T (1994) Biosynthesis of cruciferous phytoalexins. J Am Chem Soc 116:6650–6657

    Article  CAS  Google Scholar 

  17. Pedras MSC, Montaut S (2004) The biosynthesis of crucifer phytoalexins: unprecedented incorporation of a 1-methoxyindolyl precursor. Chem Commun:452–453

  18. Pedras MSC, Okinyo-Owiti DP, Thoms K, Adio AM (2009) The Biosynthetic pathway of crucifer phytoalexins and phytoanticipins: de novo incorporation of deuterated tryptophans and quasi-natural compounds. Phytochemistry 70:1129–1138

    Article  CAS  Google Scholar 

  19. Klein AP, Sattely ES (2015) Two cytochromes P450 catalyze S-heterocyclizations in cabbage phytoalexin biosynthesis. Nat Chem Biol 11:837–839

    Article  CAS  Google Scholar 

  20. Klein AP, Sattely ES (2017) Biosynthesis of cabbage phytoalexins from indole glucosinolate. Proc Natl Acad Sci USA 114:1910–1915

    Article  CAS  Google Scholar 

  21. Monde K, Harada N, Takasugi M, Kutschy P, Suchy M, Dzurilla M (2000) Enantiomic excess of a cruciferous phytoalexin, spirobrassinin, and its enantiomeric enrichment in an achiral HPLC system. J Nat Prod 63:1312–1314

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grants 18J22755 (to K. R.), 20K07109 (to S. Nakamura), and 20H03397 (to S. Nakamura).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seikou Nakamura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11418_2020_1468_MOESM1_ESM.pdf

Experimental details including the analytical data (1H NMR, 13C NMR) for the new compounds are available free of charge via the internet (pdf 2136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, K., Nakamura, S., Nakashima, S. et al. One-pot enantioselective synthesis of (S)-spirobrassinin and non-natural (S)-methylspirobrassinin from amino acids using a turnip enzyme. J Nat Med 75, 308–318 (2021). https://doi.org/10.1007/s11418-020-01468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-020-01468-9

Keywords

Navigation