Ecological, phylogenetical, and pharmacognostical characteristics of Aconitum kiyomiense endemic to Hida highlands, Takayama city, Gifu Prefecture, Japan

  • Motoyasu MinamiEmail author
  • Misaki Yasueda
  • Tomoyasu Shirako
  • Tetuo Murakami
  • Takako Mori
  • Taichi Fujii
  • Toshiyuki Atsumi
  • Toshiro Shibata
  • Yuichi Kadota
Original Paper


Aconitum kiyomiense Kadota (Ranunculaceae) is endemic to Takayama city, Gifu Prefecture, central Japan. We collected specimens from marshes and flood plains at altitudes ranging from 852 to 1085 m and from a new habitat consisting of a mesic meadow in the subalpine belt (1681 m). Glabrous pedicels and flowering sequence of inflorescence were used for identification, but intra-species variations in the pilus of pedicels (glabrous, pilose, and chimeric types) were observed. Although the flowering sequence has been reported as both indeterminate and determinate, all specimens in the present study were determinate. No intra-species variation was detected via partial nuclear internal transcribed space, and sequences did not match another 17 East Eurasian continent subgenus Aconitum species. The chloroplast trnL–trnF intergenic spacer region (trnL–trnF) showed three different haplotypes. The trnL–trnF dominant haplotype sequence was identical to that of A. kusnezoffii growing on the Eurasian continent, suggesting that A. kiyomiense is more primitive than other Japanese aconitum and a relic species of the Eurasian continent. We report the first detection of aconitine alkaloids in the tuberous roots, which exhibited aconitine alkaloid contents varying from 0.32 to 4.05 mg/g dry weight (mg/g) for aconitine, 0.02 to 4.12 mg/g for hypaconitine, undetectable to 0.05 mg/g for jesaconitine, and 0.42 to 3.76 mg/g for mesaconitine. The variation of aconitine alkaloid components and contents appeared to be random and did not vary with inflorescence phenotype, trnL–trnF haplotype, environmental habitat conditions, or the geographic region of the collection sites. Since most populations showed no genetic intra-variation, it will be necessary to maintain the continuity of habitats and designate areas for conservation of genetic diversity at the population level.


Aconitum kiyomiense Aconitine alkaloids trnL–trnF intergenic spacer region ITS 



The authors thank a Guest professor Kazuyuki Morise of Chubu University and the Takayama city government for support and Ms. Mai Okada and Mr. Ryoji Kuno of Chubu University for providing water temperature data of NAT-2 site. This work was supported by the Challenge Site of Chubu University (No. sprt155).


  1. 1.
    Kadota Y (2016) Aconitum L. In: Ohashi H, Kadota Y, Murata J, Yonekura K, Kihara H (eds) Wild flowers of Japan, vol 2. Heibonsha, Tokyo, pp 120–131Google Scholar
  2. 2.
    Kita Y, Ueda K, Kadota Y (1995) Molecular phylogeny and evolution of the Asian Aconitum subgenus Aconitum (Ranunculaceae). J Plant Res 108:429–442CrossRefGoogle Scholar
  3. 3.
    Kita Y, Ito M (2000) Nuclear ribosomal ITS sequences and phylogeny in East Asian Aconitum subgenus Aconitum (Ranunculaceae), with special reference to extensive polymorphism in individual plants. Plant Syst Evol 225:1–13CrossRefGoogle Scholar
  4. 4.
    Sato H, Yamada C, Konno C, Ohizumi Y, Endo K, Hikino H (1979) Pharmacological actions of aconitine alkaloids. Tohoku J Exp Med 128:175–187CrossRefGoogle Scholar
  5. 5.
    Taki M, Terabayashi S, Matsuba T, Sasaki H, Fukuchi M, Okada M (2002) Quality investigation of Aconiti tuber in China and Japan. Nat Med 56:163–172 (in Japanese with English summary)Google Scholar
  6. 6.
    Kakiuchi N, Atsumi T, Higuchi M, Kamikawa S, Miyako H, Wakita Y, Ohtsuka I, Hayashi S, Hishida A, Kawahara N, Nishizawa M, Yamagishi T, Kadota Y (2015) Diversity in aconitine alkaloid profile of Aconitum plants in Hokkaido contrasts with their genetic similarity. J Nat Med 69:154–164CrossRefGoogle Scholar
  7. 7.
    Kawaguchi K, Ishizaki M (2011) Breeding and cultivation studies for medicinal plant Torikabuto (Aconite). 1 Setting of breeding objective for chemical components. Jpn J Med Resour 33:14–20 (in Japanese) Google Scholar
  8. 8.
    Kadota Y (1987) A new species of Aconitum (Ranunculaceae) from the Hida Highland of Gifu prefecture, central Japan. Bull Natn Sci Mus, Tokyo Ser B 13:25–33Google Scholar
  9. 9.
    Kadota Y (1987) Taxonomy and distribution of Aconitum (Ranunculaceae) of Gifu prefecture, central Japan. Bull Gifu Bot Soc 4:1–13 (in Japanese) Google Scholar
  10. 10.
    Gifu Prefecture (2014) Red data book of plant in Gifu Prefecture. Accessed 29 Oct 2018 (in Japanese)
  11. 11.
    Luo Y, Zhang FM, Yang QE (2005) Phylogeny of Aconitum subgenus Aconitum (Ranunculaceae) inferred from ITS sequences. Plant Syst Evol 252:11–25CrossRefGoogle Scholar
  12. 12.
    Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefGoogle Scholar
  13. 13.
    Long C, Kakiuchi N, Takahashi A, Komatsu K, Cai S, Mikage M (2004) Phylogenetic analysis of the DNA sequence of the non-coding region of nuclear ribosomal DNA and chloroplast of Ephedra plants in China. Planta Med 70:1080–1084CrossRefGoogle Scholar
  14. 14.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  15. 15.
    Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9:678–687Google Scholar
  16. 16.
    Ministry of Health, Labour and Welfare (2016) Processed aconite root. The Japanese Pharmacopoeia, Seventeenth edn. Ministry of Health, Labour and Welfare, Tokyo, pp 1948–1949Google Scholar
  17. 17.
    Kadota Y (2006) Aconitum ciliare DC. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan volume IIa. Kodansha, Tokyo, pp 274–275Google Scholar
  18. 18.
    Kadota Y (2006) Aconitum jaluense Kom. subsp. jaluense. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan volume IIa. Kodansha, Tokyo, pp 277–278Google Scholar
  19. 19.
    Tsujii S (1997) A land ecosystem in the transition to the Jomon age. Quat Res 36:309–318 (in Japanese with English summary) CrossRefGoogle Scholar
  20. 20.
    Takahashi T, Tani N, Taira H, Tsumura Y (2005) Microsatellite markers reveal high allelic variation in natural populations of Cryptomeria japonica near refugial areas of the last glacial period. J Plant Res 118:83–90CrossRefGoogle Scholar
  21. 21.
    Arai T, Nisizawa T (1974) Sui-On Ron. Kyoritsu Shuppan, Tokyo (in Japanese) Google Scholar
  22. 22.
    Nei M, Graur D (1984) Extent of protein polymorphism and the neutral mutation theory. Evol Biol 17:73–118CrossRefGoogle Scholar
  23. 23.
    Kawasaki R, Motoya W, Atsumi T, Mouri C, Kakiuchi N, Mikage M (2011) The relationship between growth of the aerial part and alkaloid content variation in cultivated Aconitum carmichaeli Debeaux. J Nat Med 65:111–115CrossRefGoogle Scholar
  24. 24.
    IUCN (2002) IUCN technical guidelines on the management of ex situ populations for conservation. Accessed 29 Oct 2018

Copyright information

© The Japanese Society of Pharmacognosy 2019

Authors and Affiliations

  • Motoyasu Minami
    • 1
    Email author
  • Misaki Yasueda
    • 1
  • Tomoyasu Shirako
    • 1
  • Tetuo Murakami
    • 1
  • Takako Mori
    • 1
  • Taichi Fujii
    • 1
  • Toshiyuki Atsumi
    • 2
  • Toshiro Shibata
    • 3
  • Yuichi Kadota
    • 4
  1. 1.College of Bioscience and BiotechnologyChubu UniversityKasugaiJapan
  2. 2.Department of Pharmaceutical Sciences, School of Pharmaceutical SciencesKyushu University of Health and WelfareNobeokaJapan
  3. 3.Research Center for Medicinal Plant ResourcesNational Institutes of Biomedical Innovation, Health and NutritionTsukubaJapan
  4. 4.Department of BotanyNational Museum of Nature and ScienceTsukubaJapan

Personalised recommendations